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List of Acronyms and Abbreviations 

BSD license A class of extremely simple and very liberal licenses for computer 

software. Acronym BSD is short for Berkley Source Distribution. [1]  

CERT Computer Emergency Response Team. 

CPU Central Processing Unit. 

DoS Denial of Service. 

GNU A recursive acronym for GNU's Not Unix. [2] 

GNU GPL GNU General Public License. The most widely used license for free 

software. [2] 

GNU GRUB A multi-boot boot loader responsible for loading and transferring 

control to the operating system kernel. 

GPU Graphics processing unit. A processing unit on a graphics cards. 

HDD Hard Disk Drive. 

ICMP Internet Control Message Protocol. One of the core protocols of the 

Internet Protocol suite. 

IDS Intrusion Detection System. 

IPS Intrusion Protection System. 

md5sum A program used to calculate and verify 128-bit MD5 hashes. 

NIC Network Interface Card. 

NIDS Network-based Intrusion Detection System. 

Nmap Nmap ("Network Mapper") is a free and open-source utility for 

network discovery and security auditing. [3] 

PCAP A libpcap library file format that is the primary capture format for 

many networking tools. [4] 

RAM Random Access Memory. 

RPM A Package management system for many Linux distributions. The 

name also refers to software packaged to files in the .rpm format. It is 

a recursive acronym for "RPM Package Manager". 

SSH Secure Shell. A network protocol used primarily for remote access. 
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TCP Transmission Control Protocol. One of the core protocols of the 

Internet Protocol suite. 

UDP User Datagram Protocol. One of the core protocols of the Internet 

Protocol suite. 

yum Open-source automatic updater and package management utility for 

RPM systems. 
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Abstract 

This thesis focuses on comparing three popular open-source network intrusion detection 

systems (NIDS) called Snort, Suricata and Bro. The aim of this thesis is to find out the 

advantages and disadvantages of each system. Performance evaluation was performed 

on a 1Gbit/s network with several experiments. 

Snort has become the industry standard open-source intrusion detection technology over 

the last decade and is the most widely deployed IDS worldwide. 

Suricata is a newer intrusion detection engine that is intended to bring new ideas and 

technologies like multi-threading to the field of IDS’s. It uses roughly the same set of 

rules as Snort.  

Bro is slightly alternative compared to Snort and Suricata. While focusing on network 

security monitoring, it also provides a comprehensive platform for more general 

network traffic analysis. 

Experiments demonstrated that all three systems with their default configuration were 

only able to handle about 100Mbit/s network traffic. After numerous optimizations and 

with the use of PF_RING network socket, performance increased at least ten-fold. 

Transmission speeds of 1,000Mbit/s were handled without any dropped packets. 
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1 Introduction 

The topic of this thesis is ―A Comparative Analysis of Open-Source Intrusion Detection 

Systems‖. It will give a comprehensive comparison of three popular open-source 

intrusion detection systems and describe their ability to detect malicious activity.  

1.1 Problem Statement 

The Internet is a hostile environment for networked computers. What is more, computer 

network security has been an afterthought to combat all the exploits that have been 

discovered in the last decades. In the early days of the Internet the security relied on 

knowing and trusting the other person and their computers. However, when the Internet 

became available to the masses this was no longer possible; people could not always 

identify the other person or establish trust with them. Malicious users have taken 

advantage of this to achieve financial gain or accomplish some corporate or personal 

agenda. Curiosity and amusement are also possible reasons for malicious activity. 

In spite of the many developments in IT security over the past years, cybercriminals 

have got bolder in their attacks and there has been a significant growth in the volume of 

malware and infections. Gerhard Eschelbeck (CTO at Sophos) has said ―/…/ For 2012, I 

anticipate growing sophistication in web-borne attacks, even broader use of mobile and 

smart devices, and rapid adoption of cloud computing bringing new security challenges. 

The web will undoubtedly continue to be the most prominent vector of attack. 

Cybercriminals tend to focus where the weak spots are and use a technique until it 

becomes far less effective.‖ [5] 

Computer networks around the world are constantly being probed and attacked in an 

attempt to penetrate the security defenses and gain access to information on the 

network. Institutions maintaining these networks have to continuously monitor and 

adapt to the threats as they change to protect their users, information and other valuable 

assets from these attacks. However, it is increasingly difficult to keep up with the 

rapidly growing volume of network traffic and the number of attacks. 



12 

 

Firewalls are efficient for addressing a wide range of network filtering problems. 

However, firewalls make filtering decisions only based on network packet header data – 

packet content data are not inspected. Analyzing packet payload is often essential for 

detecting packets with malicious content. 

This is where intrusion detection systems (IDS) can be helpful. An IDS monitors and 

logs the network traffic for signs of malicious activity and generates an alert upon 

discovery of a suspicious event. 

There are many different intrusion detection systems available. One has to analyze the 

requirements and make a decision about which system fulfills their requirements the 

best. 

The problem is that often there just is not enough information available to make a 

decision about which software to choose. Moreover, in recent years some new systems 

have entered the competition, so there is little information on how they compare to the 

older, more mature systems. Furthermore, these comparisons often come from people 

involved with some IDS community, so they often seem biased. To offer a solution, this 

thesis will focus on comparing some of the more popular open-source IDS solutions 

available at the moment. 

1.2 Objective of the Thesis 

This thesis is primarily focusing on open-source network-based intrusion detection 

systems, because maintaining host-based systems does not scale well in large networks. 

The aim is not to name the best open-source IDS available, but rather come to an 

unbiased conclusion about the advantages and disadvantages of different systems. 

The main objective of this thesis is to present an overview of popular open-source IDS 

solutions and carry out their comparative evaluation with a number of tests. The tests 

were designed to satisfy the following conditions: 

 Reliability – Reliable test results; 

 Repeatability – Tests can be run again when needed; 

 Reproducibility – Provide configuration instructions. 
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There are a number of different variables that affect the performance and reliability of 

an IDS setup. Some more clearly distinguished ones are the following: 

 IDS engine effectiveness; 

 IDS configuration; 

 Quality and amount of the detection rules; 

 Amount of network traffic; 

 Host system performance. 

The practical part of this thesis will focus on comparing how the performance and 

reliability of the IDS changes when IDS configuration and the amount network traffic is 

changed. This will be measured in the number of packets dropped. More detailed 

explanations are given further in the thesis. 

Less will be focused on the accuracy (e.g. false positives/negatives) of the IDS 

solutions, because for definitive results this would require a separate analysis of the 

quality of the detection rules, which is not considered part of this thesis.  

1.3 Related Work 

The general idea of testing intrusion detection systems is not new or unique. However, 

intrusion detection is difficult to accomplish perfectly and that makes the IDS testing 

procedure an interesting research topic now and again. 

Intrusion detection systems are different when it comes to software design (e.g. single- 

or multi-threaded). Additionally, each IDS offers many configuration and optimization 

possibilities. Characteristics of the analyzed network traffic and the underlying 

hardware performance have a clear impact on the overall IDS performance. Also, the 

amount and the quality of the detection rules are of key importance. Last but not least, 

newer versions of the IDS software and supporting packages can make a notable 

difference in test results. 

There are several related research papers and thesis that will be analyzed and compared 

in this thesis. 
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There was an interesting master’s thesis from Alar Kvell titled ―A high-performance 

network intrusion detection solution for S4A software‖. The study focused on testing 

Suricata as a possible replacement for Snort in the S4A (Snort for All) software. S4A is 

an open-source network analyzer and intrusion detection system, which is used and 

maintained by CERT Estonia to detect security incidents in the networks of institutions 

like the government, local municipalities, police etc. The S4A hardware platform used 

in the testing environment was rather conservative by recent standards. It had a dual-

core Intel processor and only 4GiB of memory. This certainly sets some limits for the 

IDS solutions. Furthermore, the testing rule set contained 5373 detection rules. The 

thesis concluded that Suricata slightly outperformed Snort in some configurations, while 

making better use of resources available on the system. [6] 

A thesis by Eugene Albin compared Snort and Suricata in a variety of tests for 

performance, resource consumption and accuracy. The testing was performed on two 

separate systems. One a virtual machine running on a quad-core server with 96GB 

memory, the other a node on the Hamming supercomputer with 48 AMD 12-core CPUs 

with 125GiB of memory available. Results regarding performance concluded that 

Suricata has a high processing overhead compared to Snort, due to Suricata’s multi-

threaded design. However, on systems with plenty of processing resources, Suricata is 

able to analyze network traffic at a much higher rate. In terms of detection engine 

accuracy, the author E. Albin noted that a definitive answer was not reached, because 

the accuracy and the effectiveness of the rules were not verified as part of the thesis. [7] 

Additionally, several smaller articles were examined while working on this thesis. 

These were mostly in the form of a blog post and focused on testing and improving only 

one IDS solution at a time. While not giving any comparative results between solutions, 

they still provided useful tips and knowledge about these systems. Some of the more 

important articles are mentioned in the following paragraph. 

A white paper by Steven Sturges on the topic of tuning Snort configuration to improve 

performance shared important pointers that the user manual did not cover as thoroughly. 

[8] A post from Éric Leblond, a member of the OISF team provided important 

configuration tips for running Suricata on networks as fast as 10Gbit/s. [9] Leblond also 

determined that hyper-threading technology on Intel CPUs might cause variations in 

results and therefore using fixed CPU affinity might result in better and more stable 
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performance. [10] Martin Holste published an article on running the single-threaded Bro 

IDS with multiple worker processes to cope with higher bandwidth than a single process 

could handle. [11] 

Finally, there is also a Linux distribution called Security Onion, which is dedicated to 

intrusion detection and network security monitoring. It is based on Ubuntu and contains 

Snort, Suricata and Bro IDS engines along with many other security analysis tools. It is 

a good example on how to configure IDS solutions and an easy-to-use quick start 

solution for someone, who does not want to delve into compiling and installing 

dependencies for the IDS solution to work. [12] 

1.4 Outline of the Thesis 

This thesis is organized as follows. Chapter 1 gives an introduction to the thesis and 

states the problem that the thesis handles. Thesis objectives and previous work on 

related topics are also discussed. In chapter 2 we describe intrusion detection systems in 

general. A selection of popular open-source IDS solutions is made and each solution is 

analyzed. Next, chapter 3 gives an overview of the testing environment and describes 

the testing procedure. Input data and rule set used during the testing is analyzed. The 

fourth chapter is devoted to test results and describes any configuration changes that 

were made to improve IDS performance. Results are usually given as graphs or tables 

and are briefly interpreted. Chapter 5 briefly outlines the test results again to give a 

better overview of the improvements. In chapter 6 we offer suggestions for future 

research topics that were not handled in this thesis. And finally, chapter 7 gives a 

summary and concludes the thesis. 

1.5 Acknowledgements 

We would like to thank Elion Ettevõtted Aktsiaselts for providing the testing hardware 

and environment. 
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2 Introduction to Intrusion Detection Systems 

This chapter will give an overview of different open-source intrusion detection systems. 

For better understanding of different topics discussed later in this thesis, this section 

will also compare basic differences between intrusion detection and intrusion 

prevention systems. 

2.1 Choosing Between an IDS or IPS Solution 

IDS/IPS deployment typically consists of one or more sensors placed strategically on 

the network (see Figure 1). Additionally, the solution may contain an optional central 

console for easier management of all sensor nodes. The sensor placement on the 

network can of course differ, but in a situation where the objective is to protect internal 

network from external threats, these would be the optimal choices for the IDS and IPS 

nodes. It is sensible to place IDS/IPS sensor after the firewall for incoming traffic, 

because it is not necessary to analyze and trigger alarms for traffic that the firewall 

would block anyway. 

 
Figure 1: Possible placements of the IDS/IPS node on the network 
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There are several different methods of physically connecting an IDS sensor to the 

monitored network [13]: 

 Monitoring interface – Usually a configurable interface on a network device 

(switch, router, firewall, etc.), which copies all packets passing the device to that 

interface; 

 Network tap – A dedicated device on a network link that transparently mirrors 

all packets on the link to the IDS sensor; 

 Ethernet hub – A simple device which rebroadcasts all incoming traffic to 

other ports on the device. It is important to note that this is not a good solution if 

all network traffic passes through the device. However, it can be useful for 

replicating a single monitoring interface in a fairly low-bandwidth network. 

Typically setting up an IDS sensor involves connecting the node’s one network 

interface to the monitored network segment and the other interface to the network where 

the central management console can be accessed (e.g. the internal network segment). 

The interface connected to the monitored network does not need an IP address to 

function, but has to be set into promiscuous mode to listen for all packets transmitted on 

the network link. 

The IDS engine analyzes packets collected from the interface in promiscuous mode. 

The criteria which packets should trigger an alert are usually specified as rules. Alerts 

are logged and sent to the central console or directly to the security analyst responsible 

for the system. It is important to note that IDS systems have no effect if triggered alarms 

are not monitored by someone on a daily basis. 

See Figure 2 for a descriptive schematic on a typical IDS sensor deployment and 

operation. 
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 Figure 2: Typical IDS deployment 

 

Bear in mind that pure IDS deployments cannot protect networks on their own. They 

can only alert the security analyst that a malicious activity took place at a certain time. 

Therefore IDS sensors are sometimes augmented with capabilities for firewall 

interaction. For example, block the source IP address of a DoS attack. However, this is a 

post-factum measure that cannot stop the malicious packets that triggered the creation 

of the firewall rule. 

Additionally, it is important to remember that these blocking rules have to be tested 

very thoroughly in order to avoid false negatives, which can result in being falsely 

blocked out of the network. 

See Figure 3 for a descriptive schematic on an IDS sensor with an active firewall 

response. 
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 Figure 3: IDS setup with the ability of active response 

 

In order to improve the level of protection even more, many IDS solutions can also be 

configured to run in intrusion protection system (IPS) mode. IPS node is connected 

inline to the network segment. IPS sensor acts as an OSI layer 2 device. All traffic on 

the network goes through the analysis engine, which decides if the packet is forwarded 

or not. Dropped packets are usually logged. IDS functionality remains in a way, that 

some rules might not drop packets but only produce alerts. 

See Figure 4 for a descriptive schematic on a typical IPS sensor deployment and 

operation. 
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 Figure 4: Typical IPS setup 

 

In short, IDS is a network security monitoring solution that does not interfere with 

network traffic, but reports incidents to central console. These incidents have to be 

investigated for possible consequences by the security analyst.  

Many IDS solutions can also be configured to function as intrusion protection systems. 

IPS sensor can protect the network against threats as they are detected. Although, IPS 

solution can reduce personnel workload, it requires well-tested and very precise rules to 

avoid any false negatives. 

Furthermore, it is important to choose a solution, whose vendor puts in the effort to 

develop the product, while regularly updating and testing the rules. 

2.2 Selection of IDS Sensors for Testing 

There are many open-source and proprietary intrusion detection systems available. 

However, it could prove difficult to configure, manipulate and measure the 

effectiveness of a proprietary product. By any means, this is not to say that any 

proprietary solution does not offer this functionality, but for sake of equal comparison, 

this thesis will only be focusing on open-source IDS solutions. 
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To limit the scope and not lose focus, this thesis will only concentrate on the first 

described solution, which is the typical IDS sensor deployment (see Figure 2 in the 

previous chapter). This setup will be thoroughly tested on a selection of open-source 

IDS sensors. The testing procedure and the results will be discussed in the following 

chapters. 

Research into which open-source solutions have been used around the world and which 

of them are still actively developed resulted in three IDS engines named Snort, Suricata 

and Bro. Related works on similar topic mentioned above have also tested these IDS 

engines. 

The search revealed that Snort is a popular IDS that has been around for more than a 

decade. It is probably the most well-known open-source IDS software available today. 

[14] 

In recent years Suricata has often been compared with Snort. The two systems share the 

same rule syntax, but Suricata seems to be favored by the multi-threaded design 

compared to Snort’s single-threaded analysis engine. It would be interesting to see how 

they perform against each other. [15] 

Finally, there is also an IDS sensor and network analyzer called Bro. It is definitely not 

a new software, its research and development dates back more than 15 years. [16] 

Next we will describe and analyze each of the three solutions named above in greater 

detail. 

2.2.1 Snort 

Snort is an open-source intrusion detection system that is developed by Sourcefire. 

Snort was created in 1998 by Martin Roesch. It is capable of performing real-time 

traffic analysis and packet logging on IP networks. Snort is compatible with most 

operating systems (e.g. Linux, Mac OS X, FreeBSD, OpenBSD, UNIX and Windows). 

[17] 

The Snort detection engine and the Community Snort Rules are GNU GPL v.2 licensed. 

Sourcefire also offers proprietary Snort Rules which are licensed by Non-Commercial 

Use License. [17] 
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The two major components of Snort are the following: [17] 

1. Detection engine that utilizes modular plug-in architecture; 

2. Flexible rule language to describe traffic to be collected. 

Snort structure is illustrated on Figure 5. The preprocessor, the detection rules, and the 

alert output components of Snort are all plug-ins, which can be individually configured 

and turned on or off. 

 

Figure 5: Snort structure and operation [13] 

 

Figure 5 also shows how a network packet is handled if it is received by the network 

interface on which Snort is listening. The handling process is similar for all three chosen 

IDS solutions, but will be described here using Snort as an example. 

1. Packet capture library is a software module that gathers packets from the 

network adapter. On UNIX and Linux systems Snort uses libpcap library. On 

Windows systems WinPcap is used. 

2. Packet decoder receives the OSI layer 2 frame, analyzes packet headers and 

looks for any anomalies. Packet data is then decoded and prepared for further 

processing. 

3. Preprocessors are plug-ins that operate on the decoded data. Preprocessors can 

alert on, classify, or drop a packet before sending it to the more CPU-intensive 

detection engine. By default, Snort comes with a variety of preprocessors, some 

of which are the following. 

a. Frag3 preprocessor addresses problem of overlapping fragmented IP 

packets that could be used to avoid IDS/IPS detection. 
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b. Stream5 preprocessor makes Snort state- and session aware. For 

instance, it can detect out-of-state packets created by Nmap tool. 

c. HttpInspect preprocessor handles HTTP traffic. It extracts compressed 

data and decodes any hexadecimal or other expressions in the Universal 

Resource Identifier (URI). 

4. Detection engine is the most important part of Snort. It operates on the OSI 

transport and application layers, analyzing packet contents based on the 

detection rules. The rules contain signatures for attacks. 

5. Output plug-ins support a variety of alert and logging methods. When a 

preprocessor or rule is triggered, an alert is logged in Snort’s own text or binary 

file logging formats, database or syslog. 

Snort uses a single-threaded engine, which seems outdated, considering that nowadays 

multi-CPU and multi-core hardware is commonplace. As a result, by default Snort can 

only fully utilize one processor core. Snort developers are working on multi-threaded 

solution, however stable version has not yet been released. To alleviate this problem 

Snort can be run as multiple processes; each process utilizing a different processor core. 

This, however, increases the level of complexity, because the default network socket 

packet capture library needs to be replaced. [18] 

2.2.2 Suricata 

The Suricata Engine is a fairly new open-source intrusion detection and prevention 

engine. The initial beta release was made available for download on January 1, 2010. It 

is developed by Open Information Security Foundation (OISF), which is a non-profit 

foundation supported by the US Department of Homeland Security (DHS) and a 

number of private companies. [15] [19] 

Suricata is compatible with most operating systems (e.g. Linux, Mac, FreeBSD, UNIX 

and Windows). The Suricata Engine is available to use under the GPL v.2 license. [15] 

OISF claims that ―The Suricata Engine is not intended to just replace or emulate the 

existing tools in the industry, but will bring new ideas and technologies to the field‖. 

However, the industry considers Suricata a strong competitor to Snort and thus they are 

often compared with each other. Both systems seem to have their advantages and strong 

community support. [19] 



24 

 

The operation modes of Suricata are the same as Snort’s. It can be used either as an IDS 

or IPS system. There are no differences when connecting Suricata to the network. 

Suricata even has basically the same rule syntax as Snort (although not 100%), which 

means that both systems can use more or less the same rules. 

The general data flow through Suricata is similar to Snort. Packets are captured, 

decoded, processed and analyzed. However, when it comes to the internals of the 

Suricata Engine, differences become apparent.  

Suricata also features the HTP Library that is a HTTP normalizer and parser written by 

Ivan Ristic for the OISF. This integrates and provides advanced processing of HTTP 

streams for Suricata. The HTP library is required by the engine, but can also be used as 

an independent tool. [19] 

Suricata uses a multi-threaded approach opposed to the Snort’s single threaded engine. 

Threads use one or more Thread Modules for this. Threads have an input queue handler 

and an output queue handler. These are used to get packets from other threads, or from 

the global packet pool. [19] 

Taking these few, but significant differences into account, it is probable that Snort and 

Suricata perform differently when it comes to the speed and efficiency of network 

traffic analysis. This will be tested later in the practical phase of this thesis. 

2.2.3 Bro 

Bro intrusion detection system is focusing on network security, but also provides a 

comprehensive platform for more general network traffic analysis. Bro has been 

developed over 15 years. Bro was created by Vern Paxson, who is still leading the 

project jointly with a team of researchers and developers at the International Computer 

Science Institute (ICSI) in Berkeley and the National Center for Supercomputing 

Applications in Urbana-Champaign. [16] [20] 

Bro and its pre-written policy scripts (―rules‖) come with a BSD license, allowing free 

use with even less restrictions than the GPL v.2 license of Snort and Suricata. [16] 

Moreover, it is important to note that Bro policy scripts (―rules‖) are written in its own 

Bro scripting language that does not rely on traditional signature detection. It analyzes 
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network while trying to detect anomalies, e.g. attacker installing hacked SSH daemon. It 

is said that: ―Bro language takes some time and effort to learn, but once mastered, the 

Bro user can write or modify Bro policies to detect and alert on virtually any type of 

network activity.‖ [21] 

Bro is not a full-blown IPS, but can function as an IDS with active response. Its policy 

scripts have the functionality to execute programs, which can, in turn, perform a variety 

of tasks (e.g. send e-mail or SMS, insert new rules to the firewall). [21] 

Furthermore, Bro comes with a useful tool called BroControl which enables the 

administrator to manage multiple Bro nodes at once. In addition to being able to 

controlling the Bro instances, it could even execute shell commands on all nodes. 

Similar to Snort, Bro is also single-threaded. Although, the developers of Bro have 

implemented a proof-of-concept multi-threaded version of Bro, it is not yet ready for 

release. Therefore, once the limitations of a single processor core are reached, the only 

option is to spread the workload across many cores or even many physical nodes. The 

accompanying BroControl tool provides the means to easily manage many Bro 

processes. However, similar to Snort, this method significantly increases the level of 

system complexity. [22] 

Interestingly, Bro does not seem to have gained the popularity of Snort or Suricata. 

Maybe this is due to the fact that the developers of Bro have stayed clear of the debates 

that people behind Snort and Suricata have engaged in. [21] 
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2.3 Comparison of Features Side-by-side 

Now that each of the intrusion detection systems has been described independently, a 

descriptive table (see Table 1) that would give an overview of the different parameters 

can be assembled. 

Table 1: Feature comparison of Snort, Suricata and Bro 

Parameter Snort Suricata Bro 

IPS feature Snort_inline or snort 

used with -Q option 

optional while 

compiling (--enable-

nfqueue) 

No 

Rules VRT::Snort rules 

SO rules 

EmergingThreats 

rules 

VRT::Snort rules 

EmergingThreats 

rules 

Pre-packaged scripts 

Threads Single-thread Multi-thread Single-thread 

Installation 

complexity 

Relatively 

straightforward. 

Installation also 

available from 

packages. 

Relatively 

straightforward. 

Not available from 

packages (except 

Ubuntu). 

Relatively 

straightforward. 

Installation also 

available from 

packages. 

Documentation Well documented on 

the official website 

and many resources 

on the Internet. 

Well documented on 

the official website. 

Some resources on 

the Internet. 

Satisfactory 

documentation on the 

official website. Very 

few resources on the 

Internet 

Event logging Flat file, database, unified2 logs Flat file, database, 

barnyard2 integration 

IPv6 support Yes, when compiled 

with --enable-ipv6 

option. 

Yes Yes 

Capture 

accelerators 

Yes (e.g. PF_RING) 

Offline 

analysis (pcap 

file) 

Yes, multiple files 

consecutively 

Yes, only single file Yes, only single file 

Frontends Sguil, Aanval, BASE, FPCGUI (Full Packet 

Capture GUI), Snortsnarf 

Brownian 

License GNU GPL v.2 BSD 

 

Table 1 shows that all three intrusion detection systems have their merits and there is no 

system with a clear advantage over the others. 
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3 Testing Implementation 

In this chapter the testing environment and procedure is described. Test results will be 

given in chapter 4. 

3.1 Environment 

The testing infrastructure consisted of three rack-mounted servers and one manageable 

switch. The hardware specification of the server that was running the IDS software is of 

key importance and will be listed here. More detailed information about the testing 

environment can be found in the Annex 1 – Hardware Specification. 

The server running the IDS software was a Hewlett-Packard ProLiant DL320 

Generation6 server in the following hardware configuration. 

 Single CPU - Intel® Xeon® Processor E5630 (12M Cache, 2.53 GHz); 

o 4 cores; 

o 8 threads (Hyper-Threading enabled). 

 72GB PC3-10600 (DDR3-1333) Registered Memory; 

 NIC: Two embedded NC373i Multifunction Gigabit Network Adapters; 

 RAID1 – 2x Seagate Barracuda 750GB, 3.5‖ LFF, 7200RPM, 16MB cache, 

SATA 3.0Gb/s. 

Each IDS was set up on an individual CentOS 6.3 (64-bit) installation to avoid any 

anomalies or uncertainty from installing multiple intrusion detection systems side-by-

side. GNU GRUB boot loader was used to load the different operating systems 

installations. 

Note that some of the testing and tweaking was performed on Oracle VM VirtualBox 

virtual machines to make use of the ability to create snapshots and easily roll back 

changes. This was mostly to verify how any configuration changes affect the whole 

system, before issuing them in the actual physical testing environment. 
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3.2 Factors Affecting IDS Performance 

Judging by the info gathered from the previous chapters, conclusion can be made that 

the performance of intrusion detection systems depends mostly of the following factors. 

1. Software architecture and implementation; 

1.1. Detection algorithm optimization; 

1.2. Software configuration options; 

1.3. Amount of modules/preprocessors loaded; 

1.3.1. Preprocessor configuration. 

1.4. Operating system’s network socket packet capture module efficiency; 

1.4.1. PCAP 

1.4.2. AF_PACKET 

1.4.3. PF_RING 

2. Hardware performance; 

2.1. CPU; 

2.2. RAM; 

2.3. NIC speed; 

2.4. HDD speed; 

2.5. Bandwidth of buses connecting the previous elements. 

3. Detection rules; 

3.1. Amount of rules loaded; 

3.2. Quality (efficiency) of loaded rules. 

3.3 Input Data 

A way to test how all of these factors come together is by testing different IDS setups at 

different transmission speeds with identical pre-captured network traffic in PCAP 

format. To accomplish this, we will be using software named tcpreplay to replay the 

PCAP file to the network for the IDS to analyze. Transmission speeds will also be 

regulated by tcpreplay software. 

The PCAP file ictf2010pcap.tar.gz used in this thesis was acquired from the 

International Capture The Flag (iCTF) 2010 security exercise [23]. 
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md5sum: 

b4ecab2caf05420a8ab372b1afaf3e73  ictf2010pcap.tar.gz 

 

The file was an archive of network traffic capture session that was split into 79 PCAP 

files. When extracted, the files were 37GiB in size. However this amount of data would 

have taken too long for the slower tests. For this reason only 30 first PCAP files were 

selected and merged for the tests forming a 14.36GiB file. The packets in the PCAP 

files were originally in RAW format and were modified to Ethernet packet by tcprewrite 

software to be compatible with our thesis testing environment. 

The PCAP file used in each test has the following characteristics: 

 Packets (total): 26,316,950; 

 Protocol statistics (see Figure 6):  

o TCP: 93,67%; 

o UDP: 4,62%; 

o ICMP: 1,71%; 

 Frame length (see Figure 7 on the next page): 

o 40-79 bytes: 10,759,421 packets; 

o 80-159 bytes: 2,042,414 packets; 

o 160-319 bytes: 3,113,723 packets; 

o 320-639 bytes: 1,508,691 packets; 

o 640-1279 bytes: 183,920 packets; 

o 1280-1500 bytes: 8,708,781 packets. 

 

 Figure 6: PCAP file protocol statistics 
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Figure 7: PCAP file frame lengths in bytes 
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ae8def31513acb12dc21d72c7e88a10a  snortrules-snapshot-

2931.tar.gz 

 

Snort output regarding loaded rules: 
11719 Snort rules read 

    11719 detection rules 

    0 decoder rules 

    0 preprocessor rules 

11719 Option Chains linked into 351 Chain Headers 

0 Dynamic rules 

 

Suricata: 

http://rules.emergingthreats.net/open/suricata-1.3/emerging-all.rules 

md5sum: 

4e72c97bce5569d18884341549314797  emerging-all.rules 

 

Suricata output regarding loaded rules: 
1 rule files processed. 11703 rules succesfully loaded, 0 

rules failed 

11711 signatures processed. 4 are IP-only rules, 3809 are 

inspecting packet payload, 9484 inspect application layer, 

0 are decoder event only. 

 

Unfortunately, Bro uses different rule (policy) syntax and there are no Emerging 

Threats rules available for Bro. Therefore, we are unable to test Bro with similar rule 

set. However, Bro ships with many pre-written policy scripts that are suitable for most 

analysis needs. Scripts are customizable to support traffic analysis for specific 

requirements. [24] 

3.5 Experiment Setup 

In the practical phase of this thesis all three IDS solutions were tested in the following 

experiments. 

1. Default OS & IDS configuration (only necessary changes – e.g. select correct 

network interface); 

2. Optimize each IDS configuration by consulting manuals and online discussions; 
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3. Modify or replace network socket packet capture module to improve capturing 

performance; 

o Increase libpcap buffer size; 

o Use AF_PACKET network socket; 

o Use PF_RING network socket. 

The experiments were carried out with the following transmit speeds set by the 

tcpreplay software All tests were performed at least three times to detect and avoid any 

anomalies in the results.  

It is important to note that tcpreplay tool allows specifying the maximum transmission 

speed (using --mbps), which it will try to match, but will not exceed. However, testing 

revealed that depending on the network traffic characteristics inside the PCAP file, the 

actual speeds are somewhat slower. Testing also revealed that for each defined 

maximum speed, the average for each test cycle is always roughly the same (differences 

under ± 5Mbit/s). This actual tested average transmission speed for each replay cycle is 

indicated in the parenthesis. 

 50Mbit/s (50Mbit/s); 

 100Mbit/s (99Mbit/s); 

 150Mbit/s (147Mbit/s); 

 200Mbit/s (193Mbit/s); 

 300Mbit/s (277Mbit/s); 

 400Mbit/s (358Mbit/s); 

 500Mbit/s (433Mbit/s); 

 600Mbit/s (493Mbit/s); 

 700Mbit/s (562Mbit/s); 

 800Mbit/s (618Mbit/s); 

 900Mbit/s (655Mbit/s); 

 As fast as possible – 1,000Mbit/s (895Mbit/s) 

Interestingly, when setting the maximum transmission speed to 1,000Mbit/s or even 

more, tcpreplay was not actually able to reach the speeds achieved in the ―as fast as 

possible‖ (--topspeed) mode. Nevertheless, this mode will be denoted as 

1,000Mbit/s further on in the thesis. 
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After each test the following resulting information was checked and noted. 

 Actual average transmit speed; 

 Number of packets received; 

 Number of packets dropped; 

o By the operating system kernel; 

o By the IDS. 

 Average CPU usage; 

 Memory usage. 

We also monitored hard disk read and write operations, but since we were only writing 

generated log information to the hard disk and not the whole captured network traffic, 

we verified that our HDD configuration was fast enough to handle these operations. 

Therefore, further analysis for HDD usage seemed unnecessary. 
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4 Results 

This chapter describes the test results. For each test cycle many performance indicators 

(e.g. CPU usage, memory usage, analyzed/dropped packages) were gathered, but in 

order to be concise and focused, the level of detail presented for each experiment had to 

be adjusted accordingly. 

A performance baseline will be established in experiment 1. For the following 

experiments, changes made to the systems will be described and the results will be 

compared to the previous measurements. 

4.1 Experiment 1 - Default OS & IDS Configuration 

In first part of testing, all three intrusion detection systems were set up following 

required steps in corresponding installation manuals for Snort [25], Suricata [26] and 

Bro [24]. 

 

Figure 8: Percentage of dropped packets with default IDS configuration 
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Figure 8 shows that all IDS solutions in their default configuration can handle 

bandwidth up to 100Mbit/s with little to no dropped packets. At higher speeds results 

start to change drastically. Snort drops packets at the highest rate of the three systems. 

Bro comes in second and Suricata achieved the best results. More detailed results can be 

seen in Table 2. 

Table 2: Percentage of dropped packets with default settings 

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M 

Snort 0.0% 0.6% 13.4% 27.4% 47.3% 60.9% 64.8% 69.6% 72.3% 76.0% 77.7% (81.7%) 

Suricata 0.0% 0.0% 0.1% 0.2% 0.5% 2.3% 4.8% 8.4% 13.7% 18.6% 23.2% (35.1%) 

Bro 0.3% 2.6% 6.0% 9.5% 16.3% 22.7% 26.7% 30.5% 34.5% 39.4% 43.7% (49.1%) 

 

It is important to note that at the fastest transmission speed (1,000Mbit/s) about 2,000 

packets were dropped on the kernel level before reaching the Suricata software. For 

Snort this was around 90,000 packets. However, this is only a fraction (0.0077% and 

0.35% correspondingly) of all packets and could thus be considered of little magnitude 

in the overall statistics. Nevertheless, these values have been included in the statistics 

above, hence the value in parenthesis. Reason for this could be because of buffers filling 

up faster than software could read from them. At other transmission speeds, this 

problem did not occur. 

Reason, why Snort and Bro started dropping packets much faster, is because they are 

single-threaded and their single instances were overwhelmed by the traffic. This is 

distinctly illustrated on Figure 9. 

To explain the CPU utilization graph on Figure 9, it is important to bear in mind that 

this host has a quad-core CPU with Hyper-Threading enabled, which means that 8 

logical processors are available to the operating system. When one of the eight logical 

processors is fully utilized, the overall CPU utilization is 12.50% (i.e. 1/8). 
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Figure 9: Percentage of CPU utilized by each IDS in default configuration 
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Changes made to the configuration in order to improve performance are derived from 

consulting best-practice guides, user manuals and online support forums. Any specific 

changes will be noted in their corresponding chapters. Results will be outlined in 

chapter 4.2.4 Optimization Results. 

It is important to note that intrusion detection system optimization largely depends on 

the network traffic characteristics (packet size, session length, protocols, etc.) and what 

are the systems the IDS is supposed to be protecting (web server, mail server, etc.). In 

this thesis we tried to be applicable for most solutions, therefore we did not deliberately 

discard any traffic, but rather tried to analyze as much as possible while remaining 

reasonable. 

4.2.1 Snort 

This chapter focuses on changes made Snort configuration and how it affected its 

performance. 

Interestingly, many performance improvement suggestions for Snort are actually about 

excluding specific traffic from being analyzed by the CPU-intensive detection engine. 

This can be done by using special preprocessors or just excluding certain ports. It can be 

a good way to optimize, however one has to be careful, because this can potentially lead 

to ignoring malicious packets. This tradeoff must be considered by every IDS 

administrator. There are also some suggestions for improving the performance by 

increasing memory limitations in the Snort configuration. These suggestions are 

discussed and tested in this chapter. [8] [27] 

Warning messages regarding exceeded memory cap 

During the first experiment Snort (Stream5 preprocessor) produced warning messages 

that a preprocessor memory cap was reached and therefore some of the sessions were 

pruned (not fully analyzed) to free memory for new ones. 

Following warning messages were reported by Snort: 

S5: Pruned X sessions from cache for memcap. 

S5: Session exceeded configured max bytes to queue X using 

10yyyyy bytes (client queue). 

S5: Pruned session from cache that was using 10yyyyy bytes 

(stale/timeout). 
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To overcome this problem, the Stream5 preprocessor global memory limit was raised to 

512MiB (default is 8MiB). The number of simultaneous sessions to track was set to 

1,048,576 (maximum supported by Snort) for TCP and to 524,288 for UDP. 

preprocessor stream5_global: memcap 536870912, \ 

   max_tcp 1048576, \ 

   max_udp 524288, \ 

 

Additionally, Stream5 TCP module was configured to allow up to 32MiB or 1,048,576 

segments to be queued for reassembly of any TCP session. However, in terms of 

performance it might not be a good idea to increase the reassembly limit too high, 

because most detection signatures only focus on the beginning of a stream. For instance, 

in most cases there is no point to reassemble the whole packet stream of a 4,7GiB DVD 

image download. 

preprocessor stream5_tcp: max_queued_bytes 33554432, 

max_queued_segs 1048576, ... 

 

Further increasing the memory cap and limits for Stream5 preprocessor did not produce 

verifiable improvement in results. However, as mentioned above, this configuration 

largely depends on the characteristics of the traffic. 

Detection engine pattern matcher algorithm 

By default Snort detection engine uses ac-split (Aho-Corasick Full with separate ANY-

ANY port group) fast pattern matcher algorithm search method. According to Snort user 

manual, this method offers high performance with relatively low memory consumption. 

It is a good compromise between memory consumption and performance. [28] 

The detection engine was tested with all the search methods available. As also pointed 

out by Snort user manual, the ac (Aho-Corasick Full) queued search method showed the 

best results in performance (about 15% less dropped packets). However, it also requires 

the highest amount of memory of all the search methods. Compared to ac-split method, 

additional 1.4GiB was utilized with the given set of aforementioned rules. Since our test 

host had 72GiB of memory, this was not a problem. 

config detection: search-method ac search-optimize max-

pattern-len 20 
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HTTP preprocessor http_inspect optimization 

In Snort configuration that came with the default installation there was no limit set to 

how much Snort would analyze HTTP traffic. This turned out to load the CPU heavily 

for large HTTP transfers. 

server_flow_depth 0 \ 

client_flow_depth 0 \ 

 

Snort user manual revealed that Snort’s initial values for these two are 300 bytes. This 

means that Snort will only inspect the first 300 bytes of the client request or server 

response packet. We did not want to risk missing any potential attacks, so we increased 

the client flow depth to 1,460 bytes, which is the maximum that could be specified for 

this flow. Snort rules usually only analyze HTTP packet headers, so this limit would be 

reasonable in most cases. 

server_flow_depth 300 \ 

client_flow_depth 1460 \ 

 

Results in our tests were impressive. Overall there was about 30% less dropped packets. 

This can of course differ when analyzing traffic that contains different proportion of 

HTTP traffic. 

HTTP preprocessor can be optimized even further. For example, by disabling unlimited 

payload decompression and limiting it to the Snort default values of 1,460 and 2,920 

bytes, 4-5% less packets are dropped. 

compress_depth 1460 \ 

decompress_depth 2920 \ 

 

4.2.2 Suricata 

This chapter focuses on changes made Suricata configuration and how it affected its 

performance. 

Warning messages regarding exceeded memory cap 

Similar to Snort in the first experiment, Suricata (Flow engine) produced warning 

messages that a memory cap was reached and therefore some of the sessions were 

pruned (not fully analyzed) to free memory for new ones. 
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Following warning messages were reported by Suricata: 

flow.emerg_mode_entered 

Flow emergency mode over, back to normal... unsetting 

FLOW_EMERGENCY bit 

 

To overcome this problem, the Flow engine memory cap was set from the default of 

32MiB to 512MiB, which is similar to what was specified for Snort. As a result no more 

sessions were pruned during the test cycles. 

flow: 

  memcap: 512mb 

 

Further increasing the memory cap improved the results minimally, therefore there was 

no point in raising it higher than 512MiB for our tests. However, this largely depends on 

the characteristics of the network traffic being currently analyzed. 

Simultaneous packet processing 

Default number of packets allowed to be processed simultaneously by Suricata is 1,024, 

which according to configuration comments is rather conservative. Increasing this limit 

to 4,096 showed a slight improvement in performance. 

max-pending-packets: 4096 

 

Increasing this limit negatively impacts caching, so there is a fine line between 

improving and degrading performance with this parameter. 

Detection engine configuration 

By default Suricata uses the ac (Aho-Corasick) multi pattern matcher (mpm) algorithm 

with ―single‖ distribution context that offers good performance with low memory 

consumption. By setting the distribution context to ―full‖, the number of dropped 

packets reduced twofold. However, for the ac algorithm this required a large amount of 

memory (over 30GiB) and several minutes to load our set of rules. Considering that 

other detection algorithms offered nearly similar performance with much lower memory 

consumption (3-7GiB), it was reasonable to continue with some of the alternatives. 

Testing showed that the b2gc algorithm produced the best results in our environment. 

mpm-algo: b2gc 
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detect-engine: 

  - profile: high 

  - sgh-mpm-context: full 

 

As can be seen above, the detection engine profile was set to high from the default 

medium setting. According to the configuration comments, this should efficiently 

manage system memory use to ensure good performance. This setting directly affected 

the memory allocated during traffic analysis. Higher memory use resulted in better 

performance.  

Multi-threading and CPU affinity 

Suricata is multi-threaded. By default configuration, the ratio of detect threads created 

for each processor available was 1.5. On our system this meant that 12 detect threads 

were created. First, we discovered that increasing the number of detection threads 

surprisingly resulted in more dropped packages. This is probably due to high overhead 

of managing multiple threads. 

detect-thread-ratio: 1.5 

 

Furthermore, as already mentioned in the paragraph 1.3 Related Work, a study by Éric 

Leblond suggested that CPUs with Hyper-threading can cause variations in Suricata’s 

performance. By default Suricata tries to balance load on each available processor 

equally. This means that Hyper-threading is used even if the physicals cores are not 

fully utilized. It was recommended to ignore the detect-thread-ratio and use fixed CPU 

affinity to limit the amount of processors utilized to the number of physical cores on the 

CPU. [10]  

This indeed improved performance. When dividing Suricata threads between the 4 cores 

on the system, we aimed that each core would be equally loaded. We finally configured 

Suricata to use only three detection threads. Management, receive, decode and other 

threads were configured to use the fourth core. Our exact CPU affinity configuration 

can be found in Annex 3 – Suricata CPU Affinity Configuration. 
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4.2.3 Bro 

It is important to bear in mind that unlike Snort and Suricata, Bro does not have a main 

configuration file, where most of the settings can be altered. Instead, Bro has several 

files for different purposes. Some of the more important ones are the following. 

 broctl.cfg – BroControl management configuration file (e.g. log directory); 

 node.cfg – Configuration for standalone or clustered Bro nodes; 

 local.bro – Local site policy that states which detection policies/scripts are 

loaded during Bro startup. 

Interestingly, there are very few optimization guides available for Bro. Even the official 

documentation states that a single Bro instance can handle approximately 80Mbit/s of 

traffic. Note that this verifies the results we acquired for Bro in experiment 1. In order 

to efficiently analyze traffic faster, using some of Bro Cluster solutions is 

recommended. These solutions will be tested in experiment 3 (chapter 4.3.3). [22]  

In terms of optimizing, there were some suggestions how to improve Bro’s 

performance. Unfortunately, similar to Snort, most of them involved turning off 

detection policies, so that some of the traffic would not be analyzed. For instance, 

disabling the CPU-intensive HTTP data processing would probably result in many 

missed attacks. Optimizing the policies (rules) did not fall into the scope of this thesis. 

Therefore, we were unable to perform any optimizations that were reasonable in this 

context and thus Bro will not be included in the results in the following chapter. 

4.2.4 Optimization Results 

This chapter outlines the results of the optimizations described in this experiment. Note 

that Bro is excluded because we were unable to optimize its configuration (see chapter 

4.2.3 for explanation). 

Table 3 comprises of the percentages of dropped packets after optimizations had been 

applied to the systems. Overall, both systems showed significant improvements. 

Suricata nearly achieved the perfect result of no dropped packets, however Snort still 

had much room for improvement. See Figure 10 for a more graphical view of the 

results.  
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Note that at the fastest transmission setting (1,000Mbit/s), about 2,000 and 90,000 

packets were dropped on the kernel level before reaching the Suricata and Snort 

correspondingly. These values have been included in the following statistics. 

Table 3: Percentage of dropped packets after optimizations 

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M 

Snort 0.00% 0.02% 0.65% 1.97% 5.49% 11.31% 18.59% 22.31% 29.56% 36.02% 42.27% (58.36%) 

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% (1.84%) 

 

 

Figure 10: Percentage of dropped packets after optimizations 

 

Figure 11: Percentage of CPU utilized by Snort and Suricata after optimizations 
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Figure 11 shows that Snort CPU usage remained the same, since it was still using only 

one processor. After optimizations Suricata demonstrated about 20-30% lower CPU 

utilization. This was mostly due to the CPU affinity settings we applied to limit the 

Suricata to using only 4 processors and avoid Hyper-Threading. 

4.3 Experiment 3 – Modify or Replace Network Packet Capture 

Module 

Third and final experiment describes some of the possibilities for improving IDS 

performance by the means of modifying or replacing the network packet capture 

software. 

4.3.1 Increase libpcap Buffer Size 

Another possibility to reduce the amount of dropped packets was to increase the capture 

buffer size of libpcap. By default, libpcap has a buffer size of only 32KiB, which is 

good for a variety of portable solutions, however for our tests this limit could be 

significantly higher. 

For Linux, the maximum buffer size is 2GiB. It is important to note that this buffer will 

always be allocated from system memory, even when not fully in use. However, on our 

test system there was plenty of free memory, so this was not a problem. 

Moreover, it is important to bear in mind that this is only a buffer to handle spikes in the 

network traffic. If the transmission rates are constantly faster than what the IDS can 

handle, then this buffer will eventually fill up and the packets will be dropped anyway. 

For Snort (DAQ) and Suricata this limit can be easily set in their configuration files or 

when starting the IDS process with the following command line arguments. 

Snort configuration: 
config daq_var: buffer_size=2147483647 

 

or from command line: 
--daq pcap --daq-var buffer_size=2147483647 
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Suricata configuration: 
pcap: 

  - interface: eth1 

    buffer-size: 2147483647 

 

or from command line: 
--pcap-buffer-size 2147483647 

 

In our tests this configuration showed about 5-15% less dropped packets for Snort 

compared to the previous results. However, this improvement did not prove to be very 

stable. Results varied significantly, therefore many tests had to be performed to get a 

solid average result. Nevertheless, with this addition, Snort was able to analyze 

400Mbit/s traffic without any drops – a remarkable improvement. 

For Suricata, the configuration that we optimized in the previous chapter and this 

additional buffer was enough to achieve zero dropped packets on all test scores. Note 

that at the highest transmission speed around 2,000 and 90,000 packets were dropped on 

the kernel level for Suricata and Snort correspondingly. However, as mentioned before, 

this is marginal compared to total number of packets. These values have been included 

in the following statistics. 

Unfortunately, Bro does not yet have the functionality to set libpcap memory buffer size 

from the configuration or command line when starting the process. Feature request has 

been submitted to Bro Trac and the milestone has currently been set to Bro version 2.2. 

[29] 

Since we were considering some alternative possibilities to improve Bro’s performance, 

we were not going to modify the source code for Bro and libpcap to statically set a 

larger buffer size. Therefore Bro will again be excluded from the results presented here. 

Exact numbers for Snort and Suricata are shown in Table 4 and graphed on Figure 12. 

Table 4: Percentage of dropped packets using previous optimizations and a 2GiB libpcap buffer size 

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M 

Snort 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.45% 16.15% 27.22% 37.89% 43.72% (49.86%) 

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.01%) 
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Figure 12: Percentage of dropped packets using previous optimizations and a 2GiB libpcap buffer size 

 

Since we did not change much with the IDS process itself, the CPU load remained 

similar to previous experiments for both systems. 

4.3.2 Use AF_PACKET Network Socket 

AF_PACKET is the Linux native network socket. It functions similar to the memory 

mapped PCAP, but no external libraries are required.  

Similar to libpcap, AF_PACKET enables the user to configure a memory buffer for 

captured packets. By default, the Snort with DAQ allocates 128MiB for packet memory, 

which is significantly higher than PCAP default of 32KiB. In our tests, we set the 

memory buffer to 2GiB in order to compare the results with libpcap. The buffer size can 

be modified as follows. 

Snort command line arguments: 
--daq afpacket --daq-var buffer_size_mb=2048 

 

Suricata configuration file: 
af-packet: 

  - interface: eth1 

    buffer-size: 2147483647 

 

Furthermore, recent versions of Suricata include a ring buffer feature for AF_PACKET 

capture. This is a memory mapped buffer similar to PF_RING that will be discussed in 
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the next chapter. Additionally, a mode named Zero Copy is also provided with this 

buffer. This means that the memory allocated for the buffer is shared with the capture 

process, so instead of kernel sending packets to the capture process, the process can just 

read the packets from their original memory address. This method saves time and is less 

consuming in terms of CPU resources. These features are only supported on kernel 

versions above 3.1, but unfortunately we are using kernel version 2.6.32. [30] 

Bro did not yet seem to support the AF_PACKET capturing mode. However, we were 

still able to use the AF_PACKET for Snort and Suricata and see how it compared to the 

previous methods. See Table 5 and Figure 13 for the test results. 

Table 5: Percentage of dropped packets using previous optimizations and a 2GiB AF_PACKET buffer size 

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M 

Snort 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.50% 12.84% 16.97% 26.59% 36.46% (41.00%) 

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.44%) 

 

 

Figure 13: Percentage of dropped packets using previous optimizations and a 2GiB AF_PACKET buffer size 

 

Snort improved the results compared to libpcap capture socket. With AF_PACKET it 

was now dropping about 10% less packets overall. Suricata did not manage to achieve a 

perfect result using AF_PACKET. It was again dropping around 110,000 packets (about 

0,4%) at the fastest transmission speed. This is probably due to our older kernel version 

and Suricata not being able to make use of newer advanced features. Similarly to 
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libpcap, once the 2GiB buffer filled up AF_PACKET produced quite unstable results 

and tests had to be performed many times in order to get a decent average. 

CPU usage remained the similar to what it was after optimizations. Thus, there is no 

need to repeat the results here. 

4.3.3 Use PF_RING Network Socket 

Final solution that we considered in this thesis was using the PF_RING network socket. 

PF_RING is a new type of socket from a research company called ―ntop‖. One of its 

main traits is that it should significantly improve packet capture speed. [31] 

PF_RING is a complex software, therefore we will only be able to cover some of the 

main aspects. As already mentioned in the previous chapter, it features a circular (ring) 

buffer and the applications read packets from this buffer. Purpose of this is that 

PF_RING can distribute packets to multiple application processes simultaneously. More 

detailed explanations can be found from source [31], the PF_RING project homepage. 

PF_RING package includes source code for many PF_RING-aware NIC drivers, 

modified versions of some necessary software modules (e.g. libpcap, tcpdump, pfring-

daq-module) and even tools for testing and debugging. 

Operating modes 

There are three different operating modes for PF_RING, which can be chosen when 

loading the PF_RING kernel module with insmod pf_ring.ko command. These 

modes are as follows. [32] 

 transparent_mode=0 – Default mode, which means that packets are sent to 

PF_RING via the standard kernel mechanisms. Packet capture is not accelerated, 

but PF_RING features can be used. All NIC drivers support this mode. 

 transparent_mode=1 – In this mode NIC driver sends packets directly to 

PF_RING, however packets are still propagated to other kernel components. 

Packet capture is accelerated because packets are copied by the NIC driver itself 

without passing through the usual kernel path. In order to use this mode, a 

PF_RING-aware NIC driver has to be used. 

 transparent_mode=2 - Packets are sent directly by the NIC driver to 

PF_RING and are not propagated to other kernel components. This mode is the 
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fastest, because packets are copied only to PF_RING and discarded after 

processing. Again, the NIC driver has to support PF_RING to enable this mode. 

Installation 

Getting PF_RING to function properly proved to be a quite complicated procedure. 

There are some incomplete and outdated guides available on the Internet, which can 

cause problems. To assist in this matter, we will point out some important steps. We 

followed the guide on the official ntop site [33], however this does not explain how to 

do any of the configuration on the IDS solution. 

After compiling and installing all necessary packages, PF_RING module should be 

loaded to the kernel. There are some important arguments that could be passed to the 

module. The transparent mode has to be selected. To cope with peaks in the network 

traffic, a buffer size can be specified for PF_RING as well. 

Load PF_RING kernel module: 
insmod /lib/modules/2.6.32-

279.11.1.el6.x86_64/kernel/net/pf_ring/pf_ring.ko 

transparent_mode=2 min_num_slots=16384 

 

Note that, this guide instructs the user to unload the old network driver. Bear in mind 

that after issuing the command the host will lose network connectivity. This might be 

avoided when the newly compiled driver is ready to be loaded. To avoid the risk of 

being cut off from the server, access to the host console should be available before 

attempting this. 

Unload the old driver and load the newly compiled driver with a single invocation: 
rmmod bnx2; insmod /lib/modules/2.6.32-

279.11.1.el6.x86_64/updates/bnx2.ko 

 

IDS configuration 

Suricata and Bro were both able to make use of the improved performance. 

Unfortunately, we were not able to get PF_RING working with DAQ for Snort. For 

some reason DAQ would not load the PF_RING capture library. 

For Suricata no extra configuration was necessary and PF_RING run-mode could be 

selected from the command line. 
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Suricata command line arguments: 
--pf-ring=eth1 

 

Bro required some extra configuration. Bro had to be run in Cluster mode, in order to 

enable PF_RING. There is already an example configuration in place which can be 

modified. The last two rows indicate a load balancing method and the number of Bro 

worker processes to create for load balancing.  

Bro node.cfg configuration: 
[manager] 

type=manager 

host=172.16.16.1 

 

[proxy-0] 

type=proxy 

host=172.16.16.1 

 

[worker-0] 

type=worker 

host=172.16.16.1 

interface=eth1 

lb_method=pf_ring 

lb_procs=8 

 

Results using PF_RING 

Using PF_RING resulted in excellent performance from both Suricata and Bro. Neither 

dropped any packets, but at the fastest transmission speed around 15,000 packets were 

dropped on the kernel level. This is quite much considering the overall good 

performance. Table 6 shows the exact numbers, although with such good results there is 

not much to look at. 

Table 6: Percentage of dropped packets using previous optimizations and PF_RING 

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M 

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.06%) 

Bro 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.05%) 
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Figure 14: Percentage of CPU utilized by Suricata and Bro using PF_RING 

 

Figure 14 shows that Bro and its eight worker processes are now using a lot more 

resources. Linearity of the CPU usage graph hints that 1,000Mbit/s is probably the limit 

that Bro can handle with this configuration on this hardware. Note that Bro was always 

using about 30% of CPU resources, even when no packets were being processed. This is 

said to be due to communication overhead between the multiple processes. 

When it comes to Suricata, we were using the same optimized configuration from 

experiment 2, so there was not much change in the results. 
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5 Discussion of Results 

This chapter will summarize and interpret the results gathered during all experiments. 

5.1 Dropped Packets 

In terms of dropped packets, Suricata and Bro achieved the desired result – no dropped 

packets at the fastest transmission speed on a 1,000Mbit/s network. The actual average 

speed was rated at 895Mbit/s. This should be more than adequate to perform intrusion 

detection on a mid-sized company network link. 

Unfortunately, we were unable to test PF_RING with Snort (DAQ) due to unknown 

errors. DAQ would not load the PF_RING capture module. We believe that when using 

PF_RING, Snort would have also achieved the result of no dropped packets. 

Next we will compare the results of the highest transmission speed for each IDS and 

name the experiment where each IDS achieved its best results. This could be considered 

as a top result for each IDS. 

 Snort – Experiment 3 – AF_PACKET with 2GiB buffer – 41% dropped packets; 

 Suricata: 

o Experiment 3 – libpcap with 2GiB buffer – 0% dropped packets; 

o Experiment 3 – PF_RING – 0% dropped packets. 

 Bro – Experiment 3 – PF_RING – 0% dropped packets. 

5.2 CPU Usage 

When it comes to CPU usage, lower results are better. Of course, this is only true as 

long as no packets are dropped. It seems that multi-threaded Suricata was able to 

achieve the best results in terms of dropped packets while using the least amount of 

CPU resources. 
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Snort and Bro are single-threaded applications, so by default, they were utilizing only 

one of eight logical processors (i.e. around 12.5%). When using PF_RING socket, we 

were able to create multiple worker processes for Bro. This allowed Bro to use all 

available CPU resources. We tried the same approach for Snort, but were unsuccessful. 

Therefore, we cannot be definitive about the results. 

5.3 Memory Usage 

While Suricata seemed to be using the least amount of CPU resources, it was just the 

opposite in terms of memory usage. Figure 15 depicts the average memory consumption 

of IDS process(es) after each experiment. Note that different transmission speeds did 

not have any significant effect on memory consumption. 

 

Figure 15: IDS process memory usage in experiments 

 

Higher memory consumption is not necessarily a negative aspect as long as there is 

memory to spare. Memory can be used to enable more efficient detection algorithms, 

increase buffers and improve caching. 
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6 Future Research 

This chapter offers some ideas on future research topics that were not covered in this 

thesis. 

6.1 Snort (DAQ) with PF_RING 

In this thesis we were unable to get PF_RING network socket to function with DAQ. 

The PF_RING modules compiled and installed successfully, however DAQ would not 

load the PF_RING module. 

It would be interesting to see, whether or not Snort can achieve the same result as 

Suricata and Bro – no dropped packets at the highest transmission speed on a 

1,000Mbit/s network. The same or similar hardware would have to be used for the 

results to be comparable. 

6.2 Use Suricata with Kernel Versions Above 3.1 

Suricata had many features that were only functional on kernel versions above 3.1. We 

were not able to test them in this thesis. Enabling those newer features would probably 

increase performance even more. 

6.3 Experiment with Speeds Up To 10Gbit/s 

Nowadays many network backbones already operate at 10Gbit/s bandwidth. It would be 

interesting to experiment with the same IDS engines on a 10Gbit/s network. The testing 

environment would require to be replaced with more powerful hardware and special 

10Gbit/s network adapters. 
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6.4 GPU Processing 

It is known that Graphics Processing Units (GPUs) are often used in computational 

tasks that can be parallelized (parallel computing). In situations like these GPUs are 

usually many times faster than CPUs. However, using GPU instead of CPU complicates 

the configuration and can be difficult to manage. 

Suricata already has support for NVIDIA CUDA (Compute Unified Device 

Architecture) parallel computing platform. Other intrusion detection systems have 

experimental releases that are not yet stable. Experiments in this field could help 

contribute to this research. One would require testing hardware with a compatible 

graphics card. 

6.5 Compare Different Rule Sets 

In this thesis we did not concentrate on the accuracy of the rules. This would have 

widened the scope and increased the risk of losing focus. 

There are a few major contributors to rules for Snort and Suricata. Comparing systems 

with similar and/or different rule sets could reveal which engines and rule sets are more 

effective in detecting intrusions. 

Testing could be performed with software called Pytbull, which is a python based 

flexible IDS/IPS testing framework. It comes packaged with more than 300 tests. 

Additional tests can be added if necessary. [34] 
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7 Conclusion 

As a result of this thesis, an overview of three popular open-source intrusion detection 

systems (IDS) was provided along with their comparative performance benchmarks. 

The thesis addressed a problem that there practically were no recent and unbiased 

comparisons available for intrusion detection systems. 

On the one hand, the problem arises from a fact that most articles and comparisons are 

often written by people involved with some IDS community. On the other hand, 

intrusion detection is difficult to accomplish perfectly and that makes the IDS testing 

procedure an interesting research topic now and again. 

The thesis was set to achieve the following objectives: 

 Present an overview of popular open-source IDS solutions; 

 Carry out their comparative evaluation that satisfies the following conditions: 

o Reliability – Reliable test results; 

o Repeatability – Tests can be run again when needed; 

o Reproducibility – Provide configuration instructions. 

The aim of the thesis was not to determine the best open-source IDS, but rather bring 

out the advantages and disadvantages of each system. 

We analyzed three network-based intrusion detection systems and gave a brief 

description of each system. Snort is probably the most widely deployed IDS worldwide. 

Suricata is a younger competitor of Snort that offers many improvements. Bro is an 

alternative to Snort and Suricata that also provides a comprehensive platform for more 

general network traffic analysis. 

We performed the comparative evaluation on a 1Gbit/s network with a number of 

experiments. Note that testing the accuracy of the detection rules was not included in 

the scope of this thesis. We used the percentage of dropped packets as the primary 

metric for measuring the IDS performance. 
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With the first experiment, a performance baseline was established for all three systems 

in their default configuration. As the second experiment, optimizations were applied to 

the configuration. Finally, three different network packet capture modules (PCAP, 

AF_PACKET, PF_RING) were tested as the third experiment. 

Experiments demonstrated that systems in their default configuration were only able to 

handle about 100Mbit/s network traffic. Number of dropped packets increased 

significantly beyond this limit. At this point we began applying the optimizations and 

testing different network sockets. All modifications were documented in the thesis. 

As a result, Snort paired with AF_PACKET network socket was able to handle about 

450Mbit/s of traffic. Unfortunately, we were unsuccessful in running Snort with 

PF_RING socket due to unresolved errors. We are planning to solve this problem as 

part of our future research. 

Suricata with its multi-threaded architecture achieved good results in all experiments. 

Only exception being that it was consuming nearly double the amount of memory 

compared to Snort or Bro. Suricata did not drop any packets at 1,000Mbit/s when using 

the improved libpcap module or the PF_RING network socket. 

Bro was not able to take part in many of the experiments due to compatibility issues. 

However, similarly to Suricata, it was able to achieve the perfect result of no dropped 

packets at 1,000Mbit/s using PF_RING socket. 

In short, we saw a four- to ten-fold increase in performance. Transmission speeds up to 

1,000Mbit/s were handled without any dropped packets. 

It can be concluded that all the objectives of the thesis were achieved as described. 
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Võrdlusanalüüs vabatarkvaralistest ründetuvastus-

süsteemidest 

Magistritöö (30 EAP) 

Mauno Pihelgas 

Kokkuvõte 

Käesoleva magistritöö tulemusena anti ülevaade kolmest populaarsest 

vabatarkvaralisest ründetuvastussüsteemist ning teostati nende jõudlusmõõtmised. 

Lõputöö lahendas probleemi, et erinevatest ründetuvastussüsteemidest ei leidunud 

erapooletuid ja ajakohaseid võrdlusi. 

Ühest küljest tuleneb probleem sellest, et enamik artiklite ja võrdluste autorid on ise 

seotud mõne ründetuvastussüsteemi kogukonnaga ning nende arvamus ei pruugi alati 

olla objektiivne. Teisalt tuleneb probleem asjaolust, et ründetuvastust on tänases kiiresti 

muutuvas keskkonnas keerukas teostada. Just seetõttu on teema üha uuesti aktuaalne. 

Lõputöö ülesande püstitusel määratleti kaks põhieesmärki: 

 Anda ülevaade populaarsetest vabatarkvaralistest ründetuvastussüsteemidest; 

 Testida ning võrrelda nende ründetuvastussüsteemide jõudlusomadusi, mis 

rahuldaksid järgnevaid alamtingimusi: 

o Usaldusväärsus – Usaldusväärsed testi tulemused; 

o Korratavus – Samu teste saab vajadusel korduvalt käivitada; 

o Taastoodetavus – Paigaldusjuhiste olemasolu. 

Magistritöö eesmärk ei olnud parima ründetuvastussüsteemi leidmine, vaid pigem iga 

süsteemi tugevamate ja nõrgemate omaduste väljaselgitamine. 

Töö käigus analüüsiti ning kirjeldati kolme võrgupõhist ründetuvastussüsteemi. Snort 

on üks suurima kasutajaskonnaga ründetuvastussüsteem kogu maailmas. Suricata on 
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Snort-i suurim konkurent, omades mõningaid eeliseid Snort-i ees. Bro on alternatiivne 

lahendus Snort-i ja Suricata asemel, pakkudes ühtlasi laialdasema kasutusalaga 

võrguanalüüsi platvormi. 

Töö praktilises osas teostati 1Gbit/s ribalaiusega võrguühendusel süsteemide 

jõudlusmõõtmisi. Eksperimentide käigus ei mõõdetud mitte tuvastusreeglite täpsust, 

vaid hoopis analüüsimata jäänud võrgupakettide hulka. 

Esimeses eksperimendis, tuvastati kõigi kolme süsteemi võimekus nende 

vaikeseadistuses. Teine eksperiment sisaldas endas süsteemide seadistuse 

optimeerimist. Viimaks testiti ründetuvastussüsteeme koostöös erinevate võrgusoklite 

(ingl. k. network socket) lahendustega (PCAP, AF_PACKET, PF_RING). 

Tulemused näitasid, et vaikeseadistuses suudavad süsteemid edukalt töödelda vaid 

võrguliiklust kuni 100Mbit/s. Suurematel kiirustel kasvas analüüsimata jäänud 

võrgupakettide hulk märgatavalt. Tulemuste parandamiseks optimeeriti seadistust ning 

katsetati erinevaid võrgusoklite lahendusi. Kõik muudatused kirjeldati käesolevas töös. 

Kasutades AF_PACKET soklit, suutis Snort analüüsida kuni 450Mbit/s võrguliiklust. 

Kahjuks ei õnnestunud tehniliste probleemide tõttu kasutada Snort-i koos PF_RING 

sokliga, mis tõenäoliselt oleks parandanud tulemust veelgi. See probleem on plaanis 

edasise uurimustöö käigus kõrvaldada. 

Mitmelõimelise arhitektuuriga Suricata saavutas igas testis head tulemused. Erandiks oli 

vaid enam kui kahekordne mälukasutus võrreldes kahe teise süsteemiga. Kasutades 

täiustatud libpcap või PF_RING võrgusoklit, suutis Suricata analüüsida kiirusel 

1000Mbit/s kõik talle saadetud võrgupaketid. 

Ühilduvusprobleemide tõttu ei õnnestunud Bro testimine mõnes eksperimendis. Aga 

kasutades PF_RING võrgusoklit, suutis ka Bro kiirusel 1000Mbit/s analüüsida kõik 

võrgupaketid. 

Lühidalt öeldes, töö käigus saavutati 4-10kordne kasv kõikide ründetuvastussüsteemide 

jõudluses. Eelnevast lähtudes võib väita, et kõik töös püstitatud eesmärgid on 

nõuetekohaselt täidetud. 
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Appendices 

Annex 1 – Hardware Specification 

Role: IDS 

Hewlett-Packard (HP) ProLiant DL320 Generation6 server [35] 

 CPU: Intel® Xeon® Processor E5630 (12M Cache, 2.53 GHz); 

o 1 Physical CPU; 

o 4 cores; 

o 8 threads (Hyper-Threading enabled). 

 RAM: 72GB PC3-10600 (DDR3-1333) Registered CAS-9 Memory; 

 NIC: Embedded NC326i Dual Port Gigabit Server Adapter; 

 HDD Controller: HP Smart Array P410/512 BBWC Controller; 

 HDD: RAID1 – 2x Seagate Barracuda 750GB, 3,5‖ LFF, 7200RPM, 16MB 

cache, SATA 3.0Gb/s; 

 GPU: Integrated ATI ES1000, 64 MB; 

 Management: HP Integrated Lights Out 2 (iLO2). 

Role: Supporting Host1 & Supporting Host2 

HP ProLiant DL360 Generation5 server [36] 

 CPU: Intel® Xeon® Processor E5450 (12M Cache, 3.00 GHz); 

o 2 Physical CPUs; 

o 4 cores per CPU; 

o 8 threads. 

 RAM: 32GB PC2-5300 (DDR2-667) Fully Buffered Memory; 

 NIC: Two embedded NC373i Multifunction Gigabit Network Adapters; 

 HDD Controller: HP Smart Array P400i/256MB BBWC Controller; 

 HDD: 

o RAID1 – 2x HP 72GB, 2,5‖ SFF, 15K RPM, SAS; 

o RAID5 – 3x HP 146GB, 2,5‖ SFF, 15K RPM, SAS; 
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 GPU: Integrated ATI ES1000, 32MB; 

 Management: HP Integrated Lights Out 2 (iLO2). 

Looking at the CPU specifications of the servers, it might seem that two physical E5450 

CPUs could perform better than one E5630. Some tests were run to figure out, which 

machine performs faster. 

In synthetic single-threaded benchmarks the 3GHz E5450 processors performed better 

than the 2,53GHz E5630, however when running any of the intrusion detection systems, 

the newer E5630 had better results (dropping less packets). 

This is probably because E5450 is about three years older than E5630. Moreover, the 

DL320 G6 server has newer HDD controller and DDR3 memory instead of DDR2. The 

difference in amount of memory did not have much effect, because most of it was not 

utilized. 

Network switch 

Linksys 16-Port 10/100/1000 + 2-Port MiniGBIC Gigabit Switch with WebView [37] 

 Ports: 

o 16x 10/100/1000 RJ-45 ethernet ports; 

o 2 shared MiniGBIC slots for optical interfaces; 

 Switching Capacity: 32 Gbps, non-blocking 

 MAC table size: 8KiB 

Network cable type used in the testing environment was straight-through CAT5E 

Ethernet cable. 
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Annex 2 – Software Versions 

This chapter lists the software names and versions used during the testing phase of this 

thesis. 

Operating System 

 CentOS 6.3 64-bit 

o Basic server installation 

 Linux version 2.6.32-279.11.1.el6.x86_64 

(mockbuild@c6b9.bsys.dev.centos.org) (gcc version 4.4.6 20120305 (Red Hat 

4.4.6-4) (GCC) ) #1 SMP Tue Oct 16 15:57:10 UTC 2012 

To install prerequisite packages required by the IDS solutions, Extra Packages for 

Enterprise Linux (EPEL) repository was added to the yum package manager 

configuration. 

http://mirror.switch.ch/ftp/mirror/epel/6/x86_64/epel-release-6-7.noarch.rpm 

Measurement utilities 
dstat-0.7.0-1 

htop-1.0.1-2 

 

Snort 

snort-2.9.3.1-1 (released August 6, 2012) 

daq-1.1.1-1 

 

Prerequisites 
flex-2.5.35-8.el6.x86_64 

bison-2.4.1-5.el6.x86_64 

zlib-1.2.3-27.el6.x86_64 

zlib-devel-1.2.3-27.el6.x86_64 

libpcap-1.0.0-6.20091201git117cb5.el6.x86_64 

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64 

tcpdump-4.0.0-3.20090921gitdf3cb4.2.el6.x86_64 

pcre-7.8-4.el6.x86_64 

pcre-devel-7.8-4.el6.x86_64 

 

Suricata 

suricata-1.3.2 (released October 03, 2012) 
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Prerequisites 
libpcap-1.0.0-6.20091201git117cb5.el6.x86_64 

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64 

libnet-1.1.5-1.el6.x86_64 

libnet-devel-1.1.5-1.el6.x86_64 

pcre-7.8-4.el6.x86_64 

pcre-devel-7.8-4.el6.x86_64 

gcc-4.4.6-4.el6.x86_64 

gcc-c++-4.4.6-4.el6.x86_64 

automake-1.11.1-1.2.el6.noarch 

autoconf-2.63-5.1.el6.noarch 

libtool-2.2.6-15.5.el6.x86_64 

make-3.81-20.el6.x86_64 

libyaml-0.1.3-1.el6.x86_64 

libyaml-devel-0.1.3-1.el6.x86_64 

zlib-1.2.3-27.el6.x86_64 

zlib-devel-1.2.3-27.el6.x86_64 

libcap-ng-0.6.4 

 

Bro 

bro-2.1 (released August 29, 2012) 
 

Prerequisites 
cmake-2.6.4-5.el6.x86_64 

make-3.81-20.el6.x86_64 

gcc-4.4.6-4.el6.x86_64 

gcc-c++-4.4.6-4.el6.x86_64 

flex-2.5.35-8.el6.x86_64 

bison-2.4.1-5.el6.x86_64 

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64 

openssl-devel.x86_64 0:1.0.0-25.el6_3.1 

python-devel.x86_64 0:2.6.6-29.el6_3.3 

swig.x86_64 0:1.3.40-6.el6 

zlib-devel-1.2.3-27.el6.x86_64 

file-devel-5.04-13.el6.x86_64 

gperftools-libs-2.0-3.el6.2.x86_64 

gperftools-devel-2.0-3.el6.2.x86_64 

ipsumdump-1.82 

 

PF_RING 
PF_RING 5.5.1 (released November 24, 2012) 

libpcap-1.1.1-ring 

tcpdump.4.1.1  
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Annex 3 – Suricata CPU Affinity Configuration 

Here are listed our modified CPU affinity settings from the suricata.yaml file. 

  set-cpu-affinity: yes 

  cpu-affinity: 

    - management-cpu-set: 

        cpu: [ 0 ]  # include only these cpus in affinity 

settings 

    - receive-cpu-set: 

        cpu: [ 0 ]  # include only these cpus in affinity 

settings 

    - decode-cpu-set: 

        cpu: [ 0 ] 

        mode: "balanced" 

    - stream-cpu-set: 

        cpu: [ 0 ] 

    - detect-cpu-set: 

        cpu: [ 1, 2, 3 ] 

        mode: "exclusive" #run detect threads in these cpus 

        #Use explicitely 3 threads and don't compute number 

by using detect-thread-ratio variable 

        threads: 3 

        prio: 

          #low: [ 0 ] 

          medium: [ "1-2" ] 

          high: [ 3 ] 

          default: "medium" 

    - verdict-cpu-set: 

        cpu: [ 3 ] 

        prio: 

          default: "high" 

    - reject-cpu-set: 

        cpu: [ 3 ] 

        prio: 

          default: "low" 

    - output-cpu-set: 

        cpu: [ 3 ] 

        prio: 

           default: "medium" 
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