
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Chair of Network Software

A COMPARATIVE ANALYSIS OF OPEN-

SOURCE INTRUSION DETECTION

SYSTEMS

Master’s Thesis

ITI70LT

Student: Mauno Pihelgas

Student code: 106497IVCMM

Advisor: Risto Vaarandi, Ph.D

Tallinn

2012

2

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not

been submitted for any degree or diploma at any other University. I further declare that

the material obtained from other sources has been duly acknowledged in the thesis.

……………………………………. ………………………………

 (date) (signature)

3

4

List of Acronyms and Abbreviations

BSD license A class of extremely simple and very liberal licenses for computer

software. Acronym BSD is short for Berkley Source Distribution. [1]

CERT Computer Emergency Response Team.

CPU Central Processing Unit.

DoS Denial of Service.

GNU A recursive acronym for GNU's Not Unix. [2]

GNU GPL GNU General Public License. The most widely used license for free

software. [2]

GNU GRUB A multi-boot boot loader responsible for loading and transferring

control to the operating system kernel.

GPU Graphics processing unit. A processing unit on a graphics cards.

HDD Hard Disk Drive.

ICMP Internet Control Message Protocol. One of the core protocols of the

Internet Protocol suite.

IDS Intrusion Detection System.

IPS Intrusion Protection System.

md5sum A program used to calculate and verify 128-bit MD5 hashes.

NIC Network Interface Card.

NIDS Network-based Intrusion Detection System.

Nmap Nmap ("Network Mapper") is a free and open-source utility for

network discovery and security auditing. [3]

PCAP A libpcap library file format that is the primary capture format for

many networking tools. [4]

RAM Random Access Memory.

RPM A Package management system for many Linux distributions. The

name also refers to software packaged to files in the .rpm format. It is

a recursive acronym for "RPM Package Manager".

SSH Secure Shell. A network protocol used primarily for remote access.

5

TCP Transmission Control Protocol. One of the core protocols of the

Internet Protocol suite.

UDP User Datagram Protocol. One of the core protocols of the Internet

Protocol suite.

yum Open-source automatic updater and package management utility for

RPM systems.

6

Abstract

This thesis focuses on comparing three popular open-source network intrusion detection

systems (NIDS) called Snort, Suricata and Bro. The aim of this thesis is to find out the

advantages and disadvantages of each system. Performance evaluation was performed

on a 1Gbit/s network with several experiments.

Snort has become the industry standard open-source intrusion detection technology over

the last decade and is the most widely deployed IDS worldwide.

Suricata is a newer intrusion detection engine that is intended to bring new ideas and

technologies like multi-threading to the field of IDS’s. It uses roughly the same set of

rules as Snort.

Bro is slightly alternative compared to Snort and Suricata. While focusing on network

security monitoring, it also provides a comprehensive platform for more general

network traffic analysis.

Experiments demonstrated that all three systems with their default configuration were

only able to handle about 100Mbit/s network traffic. After numerous optimizations and

with the use of PF_RING network socket, performance increased at least ten-fold.

Transmission speeds of 1,000Mbit/s were handled without any dropped packets.

7

Table of Contents

1 Introduction ... 11

1.1 Problem Statement ... 11

1.2 Objective of the Thesis ... 12

1.3 Related Work ... 13

1.4 Outline of the Thesis .. 15

1.5 Acknowledgements .. 15

2 Introduction to Intrusion Detection Systems .. 16

2.1 Choosing Between an IDS or IPS Solution .. 16

2.2 Selection of IDS Sensors for Testing ... 20

2.2.1 Snort .. 21

2.2.2 Suricata ... 23

2.2.3 Bro .. 24

2.3 Comparison of Features Side-by-side .. 26

3 Testing Implementation .. 27

3.1 Environment ... 27

3.2 Factors Affecting IDS Performance ... 28

3.3 Input Data ... 28

3.4 Rule Set .. 30

3.5 Experiment Setup ... 31

4 Results ... 34

4.1 Experiment 1 - Default OS & IDS Configuration .. 34

4.2 Experiment 2 - Optimize IDS Configuration ... 36

4.2.1 Snort .. 37

4.2.2 Suricata ... 39

4.2.3 Bro .. 42

4.2.4 Optimization Results ... 42

4.3 Experiment 3 – Modify or Replace Network Packet Capture Module 44

4.3.1 Increase libpcap Buffer Size ... 44

4.3.2 Use AF_PACKET Network Socket .. 46

4.3.3 Use PF_RING Network Socket .. 48

5 Discussion of Results .. 52

5.1 Dropped Packets ... 52

5.2 CPU Usage ... 52

5.3 Memory Usage ... 53

6 Future Research .. 54

6.1 Snort (DAQ) with PF_RING ... 54

8

6.2 Use Suricata with Kernel Versions Above 3.1 ... 54

6.3 Experiment with Speeds Up To 10Gbit/s... 54

6.4 GPU Processing ... 55

6.5 Compare Different Rule Sets ... 55

7 Conclusion .. 56

Résumé (in Estonian) .. 58

List of References ... 60

Appendices .. 63

Annex 1 – Hardware Specification ... 63

Annex 2 – Software Versions ... 65

Annex 3 – Suricata CPU Affinity Configuration .. 67

9

List of Figures

Figure 1: Possible placements of the IDS/IPS node on the network 16

Figure 2: Typical IDS deployment ... 18

Figure 3: IDS setup with the ability of active response .. 19

Figure 4: Typical IPS setup .. 20

Figure 5: Snort structure and operation [13] ... 22

Figure 6: PCAP file protocol statistics ... 29

Figure 7: PCAP file frame lengths in bytes .. 30

Figure 8: Percentage of dropped packets with default IDS configuration 34

Figure 9: Percentage of CPU utilized by each IDS in default configuration 36

Figure 10: Percentage of dropped packets after optimizations 43

Figure 11: Percentage of CPU utilized by Snort and Suricata after optimizations......... 43

Figure 12: Percentage of dropped packets using previous optimizations and a 2GiB

libpcap buffer size ... 46

Figure 13: Percentage of dropped packets using previous optimizations and a 2GiB

AF_PACKET buffer size .. 47

Figure 14: Percentage of CPU utilized by Suricata and Bro using PF_RING 51

Figure 15: IDS process memory usage in experiments .. 53

10

List of Tables

Table 1: Feature comparison of Snort, Suricata and Bro .. 26

Table 2: Percentage of dropped packets with default settings .. 35

Table 3: Percentage of dropped packets after optimizations .. 43

Table 4: Percentage of dropped packets using previous optimizations and a 2GiB

libpcap buffer size ... 45

Table 5: Percentage of dropped packets using previous optimizations and a 2GiB

AF_PACKET buffer size .. 47

Table 6: Percentage of dropped packets using previous optimizations and PF_RING .. 50

11

1 Introduction

The topic of this thesis is ―A Comparative Analysis of Open-Source Intrusion Detection

Systems‖. It will give a comprehensive comparison of three popular open-source

intrusion detection systems and describe their ability to detect malicious activity.

1.1 Problem Statement

The Internet is a hostile environment for networked computers. What is more, computer

network security has been an afterthought to combat all the exploits that have been

discovered in the last decades. In the early days of the Internet the security relied on

knowing and trusting the other person and their computers. However, when the Internet

became available to the masses this was no longer possible; people could not always

identify the other person or establish trust with them. Malicious users have taken

advantage of this to achieve financial gain or accomplish some corporate or personal

agenda. Curiosity and amusement are also possible reasons for malicious activity.

In spite of the many developments in IT security over the past years, cybercriminals

have got bolder in their attacks and there has been a significant growth in the volume of

malware and infections. Gerhard Eschelbeck (CTO at Sophos) has said ―/…/ For 2012, I

anticipate growing sophistication in web-borne attacks, even broader use of mobile and

smart devices, and rapid adoption of cloud computing bringing new security challenges.

The web will undoubtedly continue to be the most prominent vector of attack.

Cybercriminals tend to focus where the weak spots are and use a technique until it

becomes far less effective.‖ [5]

Computer networks around the world are constantly being probed and attacked in an

attempt to penetrate the security defenses and gain access to information on the

network. Institutions maintaining these networks have to continuously monitor and

adapt to the threats as they change to protect their users, information and other valuable

assets from these attacks. However, it is increasingly difficult to keep up with the

rapidly growing volume of network traffic and the number of attacks.

12

Firewalls are efficient for addressing a wide range of network filtering problems.

However, firewalls make filtering decisions only based on network packet header data –

packet content data are not inspected. Analyzing packet payload is often essential for

detecting packets with malicious content.

This is where intrusion detection systems (IDS) can be helpful. An IDS monitors and

logs the network traffic for signs of malicious activity and generates an alert upon

discovery of a suspicious event.

There are many different intrusion detection systems available. One has to analyze the

requirements and make a decision about which system fulfills their requirements the

best.

The problem is that often there just is not enough information available to make a

decision about which software to choose. Moreover, in recent years some new systems

have entered the competition, so there is little information on how they compare to the

older, more mature systems. Furthermore, these comparisons often come from people

involved with some IDS community, so they often seem biased. To offer a solution, this

thesis will focus on comparing some of the more popular open-source IDS solutions

available at the moment.

1.2 Objective of the Thesis

This thesis is primarily focusing on open-source network-based intrusion detection

systems, because maintaining host-based systems does not scale well in large networks.

The aim is not to name the best open-source IDS available, but rather come to an

unbiased conclusion about the advantages and disadvantages of different systems.

The main objective of this thesis is to present an overview of popular open-source IDS

solutions and carry out their comparative evaluation with a number of tests. The tests

were designed to satisfy the following conditions:

 Reliability – Reliable test results;

 Repeatability – Tests can be run again when needed;

 Reproducibility – Provide configuration instructions.

13

There are a number of different variables that affect the performance and reliability of

an IDS setup. Some more clearly distinguished ones are the following:

 IDS engine effectiveness;

 IDS configuration;

 Quality and amount of the detection rules;

 Amount of network traffic;

 Host system performance.

The practical part of this thesis will focus on comparing how the performance and

reliability of the IDS changes when IDS configuration and the amount network traffic is

changed. This will be measured in the number of packets dropped. More detailed

explanations are given further in the thesis.

Less will be focused on the accuracy (e.g. false positives/negatives) of the IDS

solutions, because for definitive results this would require a separate analysis of the

quality of the detection rules, which is not considered part of this thesis.

1.3 Related Work

The general idea of testing intrusion detection systems is not new or unique. However,

intrusion detection is difficult to accomplish perfectly and that makes the IDS testing

procedure an interesting research topic now and again.

Intrusion detection systems are different when it comes to software design (e.g. single-

or multi-threaded). Additionally, each IDS offers many configuration and optimization

possibilities. Characteristics of the analyzed network traffic and the underlying

hardware performance have a clear impact on the overall IDS performance. Also, the

amount and the quality of the detection rules are of key importance. Last but not least,

newer versions of the IDS software and supporting packages can make a notable

difference in test results.

There are several related research papers and thesis that will be analyzed and compared

in this thesis.

14

There was an interesting master’s thesis from Alar Kvell titled ―A high-performance

network intrusion detection solution for S4A software‖. The study focused on testing

Suricata as a possible replacement for Snort in the S4A (Snort for All) software. S4A is

an open-source network analyzer and intrusion detection system, which is used and

maintained by CERT Estonia to detect security incidents in the networks of institutions

like the government, local municipalities, police etc. The S4A hardware platform used

in the testing environment was rather conservative by recent standards. It had a dual-

core Intel processor and only 4GiB of memory. This certainly sets some limits for the

IDS solutions. Furthermore, the testing rule set contained 5373 detection rules. The

thesis concluded that Suricata slightly outperformed Snort in some configurations, while

making better use of resources available on the system. [6]

A thesis by Eugene Albin compared Snort and Suricata in a variety of tests for

performance, resource consumption and accuracy. The testing was performed on two

separate systems. One a virtual machine running on a quad-core server with 96GB

memory, the other a node on the Hamming supercomputer with 48 AMD 12-core CPUs

with 125GiB of memory available. Results regarding performance concluded that

Suricata has a high processing overhead compared to Snort, due to Suricata’s multi-

threaded design. However, on systems with plenty of processing resources, Suricata is

able to analyze network traffic at a much higher rate. In terms of detection engine

accuracy, the author E. Albin noted that a definitive answer was not reached, because

the accuracy and the effectiveness of the rules were not verified as part of the thesis. [7]

Additionally, several smaller articles were examined while working on this thesis.

These were mostly in the form of a blog post and focused on testing and improving only

one IDS solution at a time. While not giving any comparative results between solutions,

they still provided useful tips and knowledge about these systems. Some of the more

important articles are mentioned in the following paragraph.

A white paper by Steven Sturges on the topic of tuning Snort configuration to improve

performance shared important pointers that the user manual did not cover as thoroughly.

[8] A post from Éric Leblond, a member of the OISF team provided important

configuration tips for running Suricata on networks as fast as 10Gbit/s. [9] Leblond also

determined that hyper-threading technology on Intel CPUs might cause variations in

results and therefore using fixed CPU affinity might result in better and more stable

15

performance. [10] Martin Holste published an article on running the single-threaded Bro

IDS with multiple worker processes to cope with higher bandwidth than a single process

could handle. [11]

Finally, there is also a Linux distribution called Security Onion, which is dedicated to

intrusion detection and network security monitoring. It is based on Ubuntu and contains

Snort, Suricata and Bro IDS engines along with many other security analysis tools. It is

a good example on how to configure IDS solutions and an easy-to-use quick start

solution for someone, who does not want to delve into compiling and installing

dependencies for the IDS solution to work. [12]

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 1 gives an introduction to the thesis and

states the problem that the thesis handles. Thesis objectives and previous work on

related topics are also discussed. In chapter 2 we describe intrusion detection systems in

general. A selection of popular open-source IDS solutions is made and each solution is

analyzed. Next, chapter 3 gives an overview of the testing environment and describes

the testing procedure. Input data and rule set used during the testing is analyzed. The

fourth chapter is devoted to test results and describes any configuration changes that

were made to improve IDS performance. Results are usually given as graphs or tables

and are briefly interpreted. Chapter 5 briefly outlines the test results again to give a

better overview of the improvements. In chapter 6 we offer suggestions for future

research topics that were not handled in this thesis. And finally, chapter 7 gives a

summary and concludes the thesis.

1.5 Acknowledgements

We would like to thank Elion Ettevõtted Aktsiaselts for providing the testing hardware

and environment.

16

2 Introduction to Intrusion Detection Systems

This chapter will give an overview of different open-source intrusion detection systems.

For better understanding of different topics discussed later in this thesis, this section

will also compare basic differences between intrusion detection and intrusion

prevention systems.

2.1 Choosing Between an IDS or IPS Solution

IDS/IPS deployment typically consists of one or more sensors placed strategically on

the network (see Figure 1). Additionally, the solution may contain an optional central

console for easier management of all sensor nodes. The sensor placement on the

network can of course differ, but in a situation where the objective is to protect internal

network from external threats, these would be the optimal choices for the IDS and IPS

nodes. It is sensible to place IDS/IPS sensor after the firewall for incoming traffic,

because it is not necessary to analyze and trigger alarms for traffic that the firewall

would block anyway.

Figure 1: Possible placements of the IDS/IPS node on the network

17

There are several different methods of physically connecting an IDS sensor to the

monitored network [13]:

 Monitoring interface – Usually a configurable interface on a network device

(switch, router, firewall, etc.), which copies all packets passing the device to that

interface;

 Network tap – A dedicated device on a network link that transparently mirrors

all packets on the link to the IDS sensor;

 Ethernet hub – A simple device which rebroadcasts all incoming traffic to

other ports on the device. It is important to note that this is not a good solution if

all network traffic passes through the device. However, it can be useful for

replicating a single monitoring interface in a fairly low-bandwidth network.

Typically setting up an IDS sensor involves connecting the node’s one network

interface to the monitored network segment and the other interface to the network where

the central management console can be accessed (e.g. the internal network segment).

The interface connected to the monitored network does not need an IP address to

function, but has to be set into promiscuous mode to listen for all packets transmitted on

the network link.

The IDS engine analyzes packets collected from the interface in promiscuous mode.

The criteria which packets should trigger an alert are usually specified as rules. Alerts

are logged and sent to the central console or directly to the security analyst responsible

for the system. It is important to note that IDS systems have no effect if triggered alarms

are not monitored by someone on a daily basis.

See Figure 2 for a descriptive schematic on a typical IDS sensor deployment and

operation.

18

 Figure 2: Typical IDS deployment

Bear in mind that pure IDS deployments cannot protect networks on their own. They

can only alert the security analyst that a malicious activity took place at a certain time.

Therefore IDS sensors are sometimes augmented with capabilities for firewall

interaction. For example, block the source IP address of a DoS attack. However, this is a

post-factum measure that cannot stop the malicious packets that triggered the creation

of the firewall rule.

Additionally, it is important to remember that these blocking rules have to be tested

very thoroughly in order to avoid false negatives, which can result in being falsely

blocked out of the network.

See Figure 3 for a descriptive schematic on an IDS sensor with an active firewall

response.

19

 Figure 3: IDS setup with the ability of active response

In order to improve the level of protection even more, many IDS solutions can also be

configured to run in intrusion protection system (IPS) mode. IPS node is connected

inline to the network segment. IPS sensor acts as an OSI layer 2 device. All traffic on

the network goes through the analysis engine, which decides if the packet is forwarded

or not. Dropped packets are usually logged. IDS functionality remains in a way, that

some rules might not drop packets but only produce alerts.

See Figure 4 for a descriptive schematic on a typical IPS sensor deployment and

operation.

20

 Figure 4: Typical IPS setup

In short, IDS is a network security monitoring solution that does not interfere with

network traffic, but reports incidents to central console. These incidents have to be

investigated for possible consequences by the security analyst.

Many IDS solutions can also be configured to function as intrusion protection systems.

IPS sensor can protect the network against threats as they are detected. Although, IPS

solution can reduce personnel workload, it requires well-tested and very precise rules to

avoid any false negatives.

Furthermore, it is important to choose a solution, whose vendor puts in the effort to

develop the product, while regularly updating and testing the rules.

2.2 Selection of IDS Sensors for Testing

There are many open-source and proprietary intrusion detection systems available.

However, it could prove difficult to configure, manipulate and measure the

effectiveness of a proprietary product. By any means, this is not to say that any

proprietary solution does not offer this functionality, but for sake of equal comparison,

this thesis will only be focusing on open-source IDS solutions.

21

To limit the scope and not lose focus, this thesis will only concentrate on the first

described solution, which is the typical IDS sensor deployment (see Figure 2 in the

previous chapter). This setup will be thoroughly tested on a selection of open-source

IDS sensors. The testing procedure and the results will be discussed in the following

chapters.

Research into which open-source solutions have been used around the world and which

of them are still actively developed resulted in three IDS engines named Snort, Suricata

and Bro. Related works on similar topic mentioned above have also tested these IDS

engines.

The search revealed that Snort is a popular IDS that has been around for more than a

decade. It is probably the most well-known open-source IDS software available today.

[14]

In recent years Suricata has often been compared with Snort. The two systems share the

same rule syntax, but Suricata seems to be favored by the multi-threaded design

compared to Snort’s single-threaded analysis engine. It would be interesting to see how

they perform against each other. [15]

Finally, there is also an IDS sensor and network analyzer called Bro. It is definitely not

a new software, its research and development dates back more than 15 years. [16]

Next we will describe and analyze each of the three solutions named above in greater

detail.

2.2.1 Snort

Snort is an open-source intrusion detection system that is developed by Sourcefire.

Snort was created in 1998 by Martin Roesch. It is capable of performing real-time

traffic analysis and packet logging on IP networks. Snort is compatible with most

operating systems (e.g. Linux, Mac OS X, FreeBSD, OpenBSD, UNIX and Windows).

[17]

The Snort detection engine and the Community Snort Rules are GNU GPL v.2 licensed.

Sourcefire also offers proprietary Snort Rules which are licensed by Non-Commercial

Use License. [17]

22

The two major components of Snort are the following: [17]

1. Detection engine that utilizes modular plug-in architecture;

2. Flexible rule language to describe traffic to be collected.

Snort structure is illustrated on Figure 5. The preprocessor, the detection rules, and the

alert output components of Snort are all plug-ins, which can be individually configured

and turned on or off.

Figure 5: Snort structure and operation [13]

Figure 5 also shows how a network packet is handled if it is received by the network

interface on which Snort is listening. The handling process is similar for all three chosen

IDS solutions, but will be described here using Snort as an example.

1. Packet capture library is a software module that gathers packets from the

network adapter. On UNIX and Linux systems Snort uses libpcap library. On

Windows systems WinPcap is used.

2. Packet decoder receives the OSI layer 2 frame, analyzes packet headers and

looks for any anomalies. Packet data is then decoded and prepared for further

processing.

3. Preprocessors are plug-ins that operate on the decoded data. Preprocessors can

alert on, classify, or drop a packet before sending it to the more CPU-intensive

detection engine. By default, Snort comes with a variety of preprocessors, some

of which are the following.

a. Frag3 preprocessor addresses problem of overlapping fragmented IP

packets that could be used to avoid IDS/IPS detection.

23

b. Stream5 preprocessor makes Snort state- and session aware. For

instance, it can detect out-of-state packets created by Nmap tool.

c. HttpInspect preprocessor handles HTTP traffic. It extracts compressed

data and decodes any hexadecimal or other expressions in the Universal

Resource Identifier (URI).

4. Detection engine is the most important part of Snort. It operates on the OSI

transport and application layers, analyzing packet contents based on the

detection rules. The rules contain signatures for attacks.

5. Output plug-ins support a variety of alert and logging methods. When a

preprocessor or rule is triggered, an alert is logged in Snort’s own text or binary

file logging formats, database or syslog.

Snort uses a single-threaded engine, which seems outdated, considering that nowadays

multi-CPU and multi-core hardware is commonplace. As a result, by default Snort can

only fully utilize one processor core. Snort developers are working on multi-threaded

solution, however stable version has not yet been released. To alleviate this problem

Snort can be run as multiple processes; each process utilizing a different processor core.

This, however, increases the level of complexity, because the default network socket

packet capture library needs to be replaced. [18]

2.2.2 Suricata

The Suricata Engine is a fairly new open-source intrusion detection and prevention

engine. The initial beta release was made available for download on January 1, 2010. It

is developed by Open Information Security Foundation (OISF), which is a non-profit

foundation supported by the US Department of Homeland Security (DHS) and a

number of private companies. [15] [19]

Suricata is compatible with most operating systems (e.g. Linux, Mac, FreeBSD, UNIX

and Windows). The Suricata Engine is available to use under the GPL v.2 license. [15]

OISF claims that ―The Suricata Engine is not intended to just replace or emulate the

existing tools in the industry, but will bring new ideas and technologies to the field‖.

However, the industry considers Suricata a strong competitor to Snort and thus they are

often compared with each other. Both systems seem to have their advantages and strong

community support. [19]

24

The operation modes of Suricata are the same as Snort’s. It can be used either as an IDS

or IPS system. There are no differences when connecting Suricata to the network.

Suricata even has basically the same rule syntax as Snort (although not 100%), which

means that both systems can use more or less the same rules.

The general data flow through Suricata is similar to Snort. Packets are captured,

decoded, processed and analyzed. However, when it comes to the internals of the

Suricata Engine, differences become apparent.

Suricata also features the HTP Library that is a HTTP normalizer and parser written by

Ivan Ristic for the OISF. This integrates and provides advanced processing of HTTP

streams for Suricata. The HTP library is required by the engine, but can also be used as

an independent tool. [19]

Suricata uses a multi-threaded approach opposed to the Snort’s single threaded engine.

Threads use one or more Thread Modules for this. Threads have an input queue handler

and an output queue handler. These are used to get packets from other threads, or from

the global packet pool. [19]

Taking these few, but significant differences into account, it is probable that Snort and

Suricata perform differently when it comes to the speed and efficiency of network

traffic analysis. This will be tested later in the practical phase of this thesis.

2.2.3 Bro

Bro intrusion detection system is focusing on network security, but also provides a

comprehensive platform for more general network traffic analysis. Bro has been

developed over 15 years. Bro was created by Vern Paxson, who is still leading the

project jointly with a team of researchers and developers at the International Computer

Science Institute (ICSI) in Berkeley and the National Center for Supercomputing

Applications in Urbana-Champaign. [16] [20]

Bro and its pre-written policy scripts (―rules‖) come with a BSD license, allowing free

use with even less restrictions than the GPL v.2 license of Snort and Suricata. [16]

Moreover, it is important to note that Bro policy scripts (―rules‖) are written in its own

Bro scripting language that does not rely on traditional signature detection. It analyzes

25

network while trying to detect anomalies, e.g. attacker installing hacked SSH daemon. It

is said that: ―Bro language takes some time and effort to learn, but once mastered, the

Bro user can write or modify Bro policies to detect and alert on virtually any type of

network activity.‖ [21]

Bro is not a full-blown IPS, but can function as an IDS with active response. Its policy

scripts have the functionality to execute programs, which can, in turn, perform a variety

of tasks (e.g. send e-mail or SMS, insert new rules to the firewall). [21]

Furthermore, Bro comes with a useful tool called BroControl which enables the

administrator to manage multiple Bro nodes at once. In addition to being able to

controlling the Bro instances, it could even execute shell commands on all nodes.

Similar to Snort, Bro is also single-threaded. Although, the developers of Bro have

implemented a proof-of-concept multi-threaded version of Bro, it is not yet ready for

release. Therefore, once the limitations of a single processor core are reached, the only

option is to spread the workload across many cores or even many physical nodes. The

accompanying BroControl tool provides the means to easily manage many Bro

processes. However, similar to Snort, this method significantly increases the level of

system complexity. [22]

Interestingly, Bro does not seem to have gained the popularity of Snort or Suricata.

Maybe this is due to the fact that the developers of Bro have stayed clear of the debates

that people behind Snort and Suricata have engaged in. [21]

26

2.3 Comparison of Features Side-by-side

Now that each of the intrusion detection systems has been described independently, a

descriptive table (see Table 1) that would give an overview of the different parameters

can be assembled.

Table 1: Feature comparison of Snort, Suricata and Bro

Parameter Snort Suricata Bro

IPS feature Snort_inline or snort

used with -Q option

optional while

compiling (--enable-

nfqueue)

No

Rules VRT::Snort rules

SO rules

EmergingThreats

rules

VRT::Snort rules

EmergingThreats

rules

Pre-packaged scripts

Threads Single-thread Multi-thread Single-thread

Installation

complexity

Relatively

straightforward.

Installation also

available from

packages.

Relatively

straightforward.

Not available from

packages (except

Ubuntu).

Relatively

straightforward.

Installation also

available from

packages.

Documentation Well documented on

the official website

and many resources

on the Internet.

Well documented on

the official website.

Some resources on

the Internet.

Satisfactory

documentation on the

official website. Very

few resources on the

Internet

Event logging Flat file, database, unified2 logs Flat file, database,

barnyard2 integration

IPv6 support Yes, when compiled

with --enable-ipv6

option.

Yes Yes

Capture

accelerators

Yes (e.g. PF_RING)

Offline

analysis (pcap

file)

Yes, multiple files

consecutively

Yes, only single file Yes, only single file

Frontends Sguil, Aanval, BASE, FPCGUI (Full Packet

Capture GUI), Snortsnarf

Brownian

License GNU GPL v.2 BSD

Table 1 shows that all three intrusion detection systems have their merits and there is no

system with a clear advantage over the others.

27

3 Testing Implementation

In this chapter the testing environment and procedure is described. Test results will be

given in chapter 4.

3.1 Environment

The testing infrastructure consisted of three rack-mounted servers and one manageable

switch. The hardware specification of the server that was running the IDS software is of

key importance and will be listed here. More detailed information about the testing

environment can be found in the Annex 1 – Hardware Specification.

The server running the IDS software was a Hewlett-Packard ProLiant DL320

Generation6 server in the following hardware configuration.

 Single CPU - Intel® Xeon® Processor E5630 (12M Cache, 2.53 GHz);

o 4 cores;

o 8 threads (Hyper-Threading enabled).

 72GB PC3-10600 (DDR3-1333) Registered Memory;

 NIC: Two embedded NC373i Multifunction Gigabit Network Adapters;

 RAID1 – 2x Seagate Barracuda 750GB, 3.5‖ LFF, 7200RPM, 16MB cache,

SATA 3.0Gb/s.

Each IDS was set up on an individual CentOS 6.3 (64-bit) installation to avoid any

anomalies or uncertainty from installing multiple intrusion detection systems side-by-

side. GNU GRUB boot loader was used to load the different operating systems

installations.

Note that some of the testing and tweaking was performed on Oracle VM VirtualBox

virtual machines to make use of the ability to create snapshots and easily roll back

changes. This was mostly to verify how any configuration changes affect the whole

system, before issuing them in the actual physical testing environment.

28

3.2 Factors Affecting IDS Performance

Judging by the info gathered from the previous chapters, conclusion can be made that

the performance of intrusion detection systems depends mostly of the following factors.

1. Software architecture and implementation;

1.1. Detection algorithm optimization;

1.2. Software configuration options;

1.3. Amount of modules/preprocessors loaded;

1.3.1. Preprocessor configuration.

1.4. Operating system’s network socket packet capture module efficiency;

1.4.1. PCAP

1.4.2. AF_PACKET

1.4.3. PF_RING

2. Hardware performance;

2.1. CPU;

2.2. RAM;

2.3. NIC speed;

2.4. HDD speed;

2.5. Bandwidth of buses connecting the previous elements.

3. Detection rules;

3.1. Amount of rules loaded;

3.2. Quality (efficiency) of loaded rules.

3.3 Input Data

A way to test how all of these factors come together is by testing different IDS setups at

different transmission speeds with identical pre-captured network traffic in PCAP

format. To accomplish this, we will be using software named tcpreplay to replay the

PCAP file to the network for the IDS to analyze. Transmission speeds will also be

regulated by tcpreplay software.

The PCAP file ictf2010pcap.tar.gz used in this thesis was acquired from the

International Capture The Flag (iCTF) 2010 security exercise [23].

29

md5sum:

b4ecab2caf05420a8ab372b1afaf3e73 ictf2010pcap.tar.gz

The file was an archive of network traffic capture session that was split into 79 PCAP

files. When extracted, the files were 37GiB in size. However this amount of data would

have taken too long for the slower tests. For this reason only 30 first PCAP files were

selected and merged for the tests forming a 14.36GiB file. The packets in the PCAP

files were originally in RAW format and were modified to Ethernet packet by tcprewrite

software to be compatible with our thesis testing environment.

The PCAP file used in each test has the following characteristics:

 Packets (total): 26,316,950;

 Protocol statistics (see Figure 6):

o TCP: 93,67%;

o UDP: 4,62%;

o ICMP: 1,71%;

 Frame length (see Figure 7 on the next page):

o 40-79 bytes: 10,759,421 packets;

o 80-159 bytes: 2,042,414 packets;

o 160-319 bytes: 3,113,723 packets;

o 320-639 bytes: 1,508,691 packets;

o 640-1279 bytes: 183,920 packets;

o 1280-1500 bytes: 8,708,781 packets.

 Figure 6: PCAP file protocol statistics

93,67%

4,62% 1,71%

TCP

UDP

ICMP

Protocol Statistics

30

Figure 7: PCAP file frame lengths in bytes

The PCAP file is befitting for a company or data center network, where most of the

traffic uses TCP protocol. Packet lengths and other statistics also seem reasonable, thus

this will be the file that will be used for testing all the IDS engines.

3.4 Rule Set

In order to achieve comparable performance results, Snort and Suricata were both using

Emerging Threats detection rules dating from November 15, 2012 17:53. The amount of

rules is roughly the same for both files – 11,719 for Snort and 11,703 for Suricata.

Additionally for Snort, Preprocessor and Shared Object rules dating from October 30,

2012 were also downloaded packaged as snortrules-snapshot-2931.tar.gz. Detection

rules from this package were not included into Snort configuration.

Snort:

http://rules.emergingthreats.net/open/snort-2.9.0/emerging-all.rules

http://www.snort.org/downloads/2063

md5sum:

92d2f0ae03b98d6a014dc378b81aaf00 emerging-all.rules

0 0

10759421

2042414

3113723

1508691

183920

8708781

0
0

2000000

4000000

6000000

8000000

10000000

12000000
N

u
m

b
er

 o
f

fr
a

m
es

Frame length (Bytes)

Frame Lengths

31

ae8def31513acb12dc21d72c7e88a10a snortrules-snapshot-

2931.tar.gz

Snort output regarding loaded rules:
11719 Snort rules read

 11719 detection rules

 0 decoder rules

 0 preprocessor rules

11719 Option Chains linked into 351 Chain Headers

0 Dynamic rules

Suricata:

http://rules.emergingthreats.net/open/suricata-1.3/emerging-all.rules

md5sum:

4e72c97bce5569d18884341549314797 emerging-all.rules

Suricata output regarding loaded rules:
1 rule files processed. 11703 rules succesfully loaded, 0

rules failed

11711 signatures processed. 4 are IP-only rules, 3809 are

inspecting packet payload, 9484 inspect application layer,

0 are decoder event only.

Unfortunately, Bro uses different rule (policy) syntax and there are no Emerging

Threats rules available for Bro. Therefore, we are unable to test Bro with similar rule

set. However, Bro ships with many pre-written policy scripts that are suitable for most

analysis needs. Scripts are customizable to support traffic analysis for specific

requirements. [24]

3.5 Experiment Setup

In the practical phase of this thesis all three IDS solutions were tested in the following

experiments.

1. Default OS & IDS configuration (only necessary changes – e.g. select correct

network interface);

2. Optimize each IDS configuration by consulting manuals and online discussions;

32

3. Modify or replace network socket packet capture module to improve capturing

performance;

o Increase libpcap buffer size;

o Use AF_PACKET network socket;

o Use PF_RING network socket.

The experiments were carried out with the following transmit speeds set by the

tcpreplay software All tests were performed at least three times to detect and avoid any

anomalies in the results.

It is important to note that tcpreplay tool allows specifying the maximum transmission

speed (using --mbps), which it will try to match, but will not exceed. However, testing

revealed that depending on the network traffic characteristics inside the PCAP file, the

actual speeds are somewhat slower. Testing also revealed that for each defined

maximum speed, the average for each test cycle is always roughly the same (differences

under ± 5Mbit/s). This actual tested average transmission speed for each replay cycle is

indicated in the parenthesis.

 50Mbit/s (50Mbit/s);

 100Mbit/s (99Mbit/s);

 150Mbit/s (147Mbit/s);

 200Mbit/s (193Mbit/s);

 300Mbit/s (277Mbit/s);

 400Mbit/s (358Mbit/s);

 500Mbit/s (433Mbit/s);

 600Mbit/s (493Mbit/s);

 700Mbit/s (562Mbit/s);

 800Mbit/s (618Mbit/s);

 900Mbit/s (655Mbit/s);

 As fast as possible – 1,000Mbit/s (895Mbit/s)

Interestingly, when setting the maximum transmission speed to 1,000Mbit/s or even

more, tcpreplay was not actually able to reach the speeds achieved in the ―as fast as

possible‖ (--topspeed) mode. Nevertheless, this mode will be denoted as

1,000Mbit/s further on in the thesis.

33

After each test the following resulting information was checked and noted.

 Actual average transmit speed;

 Number of packets received;

 Number of packets dropped;

o By the operating system kernel;

o By the IDS.

 Average CPU usage;

 Memory usage.

We also monitored hard disk read and write operations, but since we were only writing

generated log information to the hard disk and not the whole captured network traffic,

we verified that our HDD configuration was fast enough to handle these operations.

Therefore, further analysis for HDD usage seemed unnecessary.

34

4 Results

This chapter describes the test results. For each test cycle many performance indicators

(e.g. CPU usage, memory usage, analyzed/dropped packages) were gathered, but in

order to be concise and focused, the level of detail presented for each experiment had to

be adjusted accordingly.

A performance baseline will be established in experiment 1. For the following

experiments, changes made to the systems will be described and the results will be

compared to the previous measurements.

4.1 Experiment 1 - Default OS & IDS Configuration

In first part of testing, all three intrusion detection systems were set up following

required steps in corresponding installation manuals for Snort [25], Suricata [26] and

Bro [24].

Figure 8: Percentage of dropped packets with default IDS configuration

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
d

ro
p

p
e

d
 p

ac
ke

ts

Maximum transmission speed (Mbit/s)

Dropped packets with default settings

Snort Suricata Bro

35

Figure 8 shows that all IDS solutions in their default configuration can handle

bandwidth up to 100Mbit/s with little to no dropped packets. At higher speeds results

start to change drastically. Snort drops packets at the highest rate of the three systems.

Bro comes in second and Suricata achieved the best results. More detailed results can be

seen in Table 2.

Table 2: Percentage of dropped packets with default settings

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M

Snort 0.0% 0.6% 13.4% 27.4% 47.3% 60.9% 64.8% 69.6% 72.3% 76.0% 77.7% (81.7%)

Suricata 0.0% 0.0% 0.1% 0.2% 0.5% 2.3% 4.8% 8.4% 13.7% 18.6% 23.2% (35.1%)

Bro 0.3% 2.6% 6.0% 9.5% 16.3% 22.7% 26.7% 30.5% 34.5% 39.4% 43.7% (49.1%)

It is important to note that at the fastest transmission speed (1,000Mbit/s) about 2,000

packets were dropped on the kernel level before reaching the Suricata software. For

Snort this was around 90,000 packets. However, this is only a fraction (0.0077% and

0.35% correspondingly) of all packets and could thus be considered of little magnitude

in the overall statistics. Nevertheless, these values have been included in the statistics

above, hence the value in parenthesis. Reason for this could be because of buffers filling

up faster than software could read from them. At other transmission speeds, this

problem did not occur.

Reason, why Snort and Bro started dropping packets much faster, is because they are

single-threaded and their single instances were overwhelmed by the traffic. This is

distinctly illustrated on Figure 9.

To explain the CPU utilization graph on Figure 9, it is important to bear in mind that

this host has a quad-core CPU with Hyper-Threading enabled, which means that 8

logical processors are available to the operating system. When one of the eight logical

processors is fully utilized, the overall CPU utilization is 12.50% (i.e. 1/8).

36

Figure 9: Percentage of CPU utilized by each IDS in default configuration

The graph clearly depicts that single-threaded Snort is only able to make use of one

processor. Even as the transmission speed increases, the CPU load that Snort generates

does not exceed 12.50%.

Bro’s detection engine is single-threaded as well, but its manager and communications

protocol, which are running as a separate process, use some additional resources. It is

important to note that this communication protocol loop creates some load (about 4%

CPU utilization) on the system even when no traffic is being analyzed.

Suricata demonstrates that it is able to make use of more processing power than the

other two systems. The CPU usage increases linearly. However, it seems that there is

still room for improvement, since it is dropping some of the packets and not using the

CPU at full capacity.

4.2 Experiment 2 - Optimize IDS Configuration

The first experiment revealed that the default configuration for IDS solutions is not

optimal for analyzing high-speed network traffic exceeding 100Mbit/s. Therefore, this

chapter focuses on simply changing the IDS configuration to achieve better results.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 u

sa
ge

 %

Maximum transmission speed (Mbit/s)

CPU utilization with default settings

Snort Suricata Bro

37

Changes made to the configuration in order to improve performance are derived from

consulting best-practice guides, user manuals and online support forums. Any specific

changes will be noted in their corresponding chapters. Results will be outlined in

chapter 4.2.4 Optimization Results.

It is important to note that intrusion detection system optimization largely depends on

the network traffic characteristics (packet size, session length, protocols, etc.) and what

are the systems the IDS is supposed to be protecting (web server, mail server, etc.). In

this thesis we tried to be applicable for most solutions, therefore we did not deliberately

discard any traffic, but rather tried to analyze as much as possible while remaining

reasonable.

4.2.1 Snort

This chapter focuses on changes made Snort configuration and how it affected its

performance.

Interestingly, many performance improvement suggestions for Snort are actually about

excluding specific traffic from being analyzed by the CPU-intensive detection engine.

This can be done by using special preprocessors or just excluding certain ports. It can be

a good way to optimize, however one has to be careful, because this can potentially lead

to ignoring malicious packets. This tradeoff must be considered by every IDS

administrator. There are also some suggestions for improving the performance by

increasing memory limitations in the Snort configuration. These suggestions are

discussed and tested in this chapter. [8] [27]

Warning messages regarding exceeded memory cap

During the first experiment Snort (Stream5 preprocessor) produced warning messages

that a preprocessor memory cap was reached and therefore some of the sessions were

pruned (not fully analyzed) to free memory for new ones.

Following warning messages were reported by Snort:

S5: Pruned X sessions from cache for memcap.

S5: Session exceeded configured max bytes to queue X using

10yyyyy bytes (client queue).

S5: Pruned session from cache that was using 10yyyyy bytes

(stale/timeout).

38

To overcome this problem, the Stream5 preprocessor global memory limit was raised to

512MiB (default is 8MiB). The number of simultaneous sessions to track was set to

1,048,576 (maximum supported by Snort) for TCP and to 524,288 for UDP.

preprocessor stream5_global: memcap 536870912, \

 max_tcp 1048576, \

 max_udp 524288, \

Additionally, Stream5 TCP module was configured to allow up to 32MiB or 1,048,576

segments to be queued for reassembly of any TCP session. However, in terms of

performance it might not be a good idea to increase the reassembly limit too high,

because most detection signatures only focus on the beginning of a stream. For instance,

in most cases there is no point to reassemble the whole packet stream of a 4,7GiB DVD

image download.

preprocessor stream5_tcp: max_queued_bytes 33554432,

max_queued_segs 1048576, ...

Further increasing the memory cap and limits for Stream5 preprocessor did not produce

verifiable improvement in results. However, as mentioned above, this configuration

largely depends on the characteristics of the traffic.

Detection engine pattern matcher algorithm

By default Snort detection engine uses ac-split (Aho-Corasick Full with separate ANY-

ANY port group) fast pattern matcher algorithm search method. According to Snort user

manual, this method offers high performance with relatively low memory consumption.

It is a good compromise between memory consumption and performance. [28]

The detection engine was tested with all the search methods available. As also pointed

out by Snort user manual, the ac (Aho-Corasick Full) queued search method showed the

best results in performance (about 15% less dropped packets). However, it also requires

the highest amount of memory of all the search methods. Compared to ac-split method,

additional 1.4GiB was utilized with the given set of aforementioned rules. Since our test

host had 72GiB of memory, this was not a problem.

config detection: search-method ac search-optimize max-

pattern-len 20

39

HTTP preprocessor http_inspect optimization

In Snort configuration that came with the default installation there was no limit set to

how much Snort would analyze HTTP traffic. This turned out to load the CPU heavily

for large HTTP transfers.

server_flow_depth 0 \

client_flow_depth 0 \

Snort user manual revealed that Snort’s initial values for these two are 300 bytes. This

means that Snort will only inspect the first 300 bytes of the client request or server

response packet. We did not want to risk missing any potential attacks, so we increased

the client flow depth to 1,460 bytes, which is the maximum that could be specified for

this flow. Snort rules usually only analyze HTTP packet headers, so this limit would be

reasonable in most cases.

server_flow_depth 300 \

client_flow_depth 1460 \

Results in our tests were impressive. Overall there was about 30% less dropped packets.

This can of course differ when analyzing traffic that contains different proportion of

HTTP traffic.

HTTP preprocessor can be optimized even further. For example, by disabling unlimited

payload decompression and limiting it to the Snort default values of 1,460 and 2,920

bytes, 4-5% less packets are dropped.

compress_depth 1460 \

decompress_depth 2920 \

4.2.2 Suricata

This chapter focuses on changes made Suricata configuration and how it affected its

performance.

Warning messages regarding exceeded memory cap

Similar to Snort in the first experiment, Suricata (Flow engine) produced warning

messages that a memory cap was reached and therefore some of the sessions were

pruned (not fully analyzed) to free memory for new ones.

40

Following warning messages were reported by Suricata:

flow.emerg_mode_entered

Flow emergency mode over, back to normal... unsetting

FLOW_EMERGENCY bit

To overcome this problem, the Flow engine memory cap was set from the default of

32MiB to 512MiB, which is similar to what was specified for Snort. As a result no more

sessions were pruned during the test cycles.

flow:

 memcap: 512mb

Further increasing the memory cap improved the results minimally, therefore there was

no point in raising it higher than 512MiB for our tests. However, this largely depends on

the characteristics of the network traffic being currently analyzed.

Simultaneous packet processing

Default number of packets allowed to be processed simultaneously by Suricata is 1,024,

which according to configuration comments is rather conservative. Increasing this limit

to 4,096 showed a slight improvement in performance.

max-pending-packets: 4096

Increasing this limit negatively impacts caching, so there is a fine line between

improving and degrading performance with this parameter.

Detection engine configuration

By default Suricata uses the ac (Aho-Corasick) multi pattern matcher (mpm) algorithm

with ―single‖ distribution context that offers good performance with low memory

consumption. By setting the distribution context to ―full‖, the number of dropped

packets reduced twofold. However, for the ac algorithm this required a large amount of

memory (over 30GiB) and several minutes to load our set of rules. Considering that

other detection algorithms offered nearly similar performance with much lower memory

consumption (3-7GiB), it was reasonable to continue with some of the alternatives.

Testing showed that the b2gc algorithm produced the best results in our environment.

mpm-algo: b2gc

41

detect-engine:

 - profile: high

 - sgh-mpm-context: full

As can be seen above, the detection engine profile was set to high from the default

medium setting. According to the configuration comments, this should efficiently

manage system memory use to ensure good performance. This setting directly affected

the memory allocated during traffic analysis. Higher memory use resulted in better

performance.

Multi-threading and CPU affinity

Suricata is multi-threaded. By default configuration, the ratio of detect threads created

for each processor available was 1.5. On our system this meant that 12 detect threads

were created. First, we discovered that increasing the number of detection threads

surprisingly resulted in more dropped packages. This is probably due to high overhead

of managing multiple threads.

detect-thread-ratio: 1.5

Furthermore, as already mentioned in the paragraph 1.3 Related Work, a study by Éric

Leblond suggested that CPUs with Hyper-threading can cause variations in Suricata’s

performance. By default Suricata tries to balance load on each available processor

equally. This means that Hyper-threading is used even if the physicals cores are not

fully utilized. It was recommended to ignore the detect-thread-ratio and use fixed CPU

affinity to limit the amount of processors utilized to the number of physical cores on the

CPU. [10]

This indeed improved performance. When dividing Suricata threads between the 4 cores

on the system, we aimed that each core would be equally loaded. We finally configured

Suricata to use only three detection threads. Management, receive, decode and other

threads were configured to use the fourth core. Our exact CPU affinity configuration

can be found in Annex 3 – Suricata CPU Affinity Configuration.

42

4.2.3 Bro

It is important to bear in mind that unlike Snort and Suricata, Bro does not have a main

configuration file, where most of the settings can be altered. Instead, Bro has several

files for different purposes. Some of the more important ones are the following.

 broctl.cfg – BroControl management configuration file (e.g. log directory);

 node.cfg – Configuration for standalone or clustered Bro nodes;

 local.bro – Local site policy that states which detection policies/scripts are

loaded during Bro startup.

Interestingly, there are very few optimization guides available for Bro. Even the official

documentation states that a single Bro instance can handle approximately 80Mbit/s of

traffic. Note that this verifies the results we acquired for Bro in experiment 1. In order

to efficiently analyze traffic faster, using some of Bro Cluster solutions is

recommended. These solutions will be tested in experiment 3 (chapter 4.3.3). [22]

In terms of optimizing, there were some suggestions how to improve Bro’s

performance. Unfortunately, similar to Snort, most of them involved turning off

detection policies, so that some of the traffic would not be analyzed. For instance,

disabling the CPU-intensive HTTP data processing would probably result in many

missed attacks. Optimizing the policies (rules) did not fall into the scope of this thesis.

Therefore, we were unable to perform any optimizations that were reasonable in this

context and thus Bro will not be included in the results in the following chapter.

4.2.4 Optimization Results

This chapter outlines the results of the optimizations described in this experiment. Note

that Bro is excluded because we were unable to optimize its configuration (see chapter

4.2.3 for explanation).

Table 3 comprises of the percentages of dropped packets after optimizations had been

applied to the systems. Overall, both systems showed significant improvements.

Suricata nearly achieved the perfect result of no dropped packets, however Snort still

had much room for improvement. See Figure 10 for a more graphical view of the

results.

43

Note that at the fastest transmission setting (1,000Mbit/s), about 2,000 and 90,000

packets were dropped on the kernel level before reaching the Suricata and Snort

correspondingly. These values have been included in the following statistics.

Table 3: Percentage of dropped packets after optimizations

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M

Snort 0.00% 0.02% 0.65% 1.97% 5.49% 11.31% 18.59% 22.31% 29.56% 36.02% 42.27% (58.36%)

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% (1.84%)

Figure 10: Percentage of dropped packets after optimizations

Figure 11: Percentage of CPU utilized by Snort and Suricata after optimizations

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
d

ro
p

p
e

d
 p

ac
ke

ts

Maximum transmission speed (Mbit/s)

Dropped packets after optimizations

Snort Suricata

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 u

sa
ge

 %

Maximum transmission speed (Mbit/s)

CPU utilization after optimizations

Snort Suricata

44

Figure 11 shows that Snort CPU usage remained the same, since it was still using only

one processor. After optimizations Suricata demonstrated about 20-30% lower CPU

utilization. This was mostly due to the CPU affinity settings we applied to limit the

Suricata to using only 4 processors and avoid Hyper-Threading.

4.3 Experiment 3 – Modify or Replace Network Packet Capture

Module

Third and final experiment describes some of the possibilities for improving IDS

performance by the means of modifying or replacing the network packet capture

software.

4.3.1 Increase libpcap Buffer Size

Another possibility to reduce the amount of dropped packets was to increase the capture

buffer size of libpcap. By default, libpcap has a buffer size of only 32KiB, which is

good for a variety of portable solutions, however for our tests this limit could be

significantly higher.

For Linux, the maximum buffer size is 2GiB. It is important to note that this buffer will

always be allocated from system memory, even when not fully in use. However, on our

test system there was plenty of free memory, so this was not a problem.

Moreover, it is important to bear in mind that this is only a buffer to handle spikes in the

network traffic. If the transmission rates are constantly faster than what the IDS can

handle, then this buffer will eventually fill up and the packets will be dropped anyway.

For Snort (DAQ) and Suricata this limit can be easily set in their configuration files or

when starting the IDS process with the following command line arguments.

Snort configuration:
config daq_var: buffer_size=2147483647

or from command line:
--daq pcap --daq-var buffer_size=2147483647

45

Suricata configuration:
pcap:

 - interface: eth1

 buffer-size: 2147483647

or from command line:
--pcap-buffer-size 2147483647

In our tests this configuration showed about 5-15% less dropped packets for Snort

compared to the previous results. However, this improvement did not prove to be very

stable. Results varied significantly, therefore many tests had to be performed to get a

solid average result. Nevertheless, with this addition, Snort was able to analyze

400Mbit/s traffic without any drops – a remarkable improvement.

For Suricata, the configuration that we optimized in the previous chapter and this

additional buffer was enough to achieve zero dropped packets on all test scores. Note

that at the highest transmission speed around 2,000 and 90,000 packets were dropped on

the kernel level for Suricata and Snort correspondingly. However, as mentioned before,

this is marginal compared to total number of packets. These values have been included

in the following statistics.

Unfortunately, Bro does not yet have the functionality to set libpcap memory buffer size

from the configuration or command line when starting the process. Feature request has

been submitted to Bro Trac and the milestone has currently been set to Bro version 2.2.

[29]

Since we were considering some alternative possibilities to improve Bro’s performance,

we were not going to modify the source code for Bro and libpcap to statically set a

larger buffer size. Therefore Bro will again be excluded from the results presented here.

Exact numbers for Snort and Suricata are shown in Table 4 and graphed on Figure 12.

Table 4: Percentage of dropped packets using previous optimizations and a 2GiB libpcap buffer size

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M

Snort 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.45% 16.15% 27.22% 37.89% 43.72% (49.86%)

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.01%)

46

Figure 12: Percentage of dropped packets using previous optimizations and a 2GiB libpcap buffer size

Since we did not change much with the IDS process itself, the CPU load remained

similar to previous experiments for both systems.

4.3.2 Use AF_PACKET Network Socket

AF_PACKET is the Linux native network socket. It functions similar to the memory

mapped PCAP, but no external libraries are required.

Similar to libpcap, AF_PACKET enables the user to configure a memory buffer for

captured packets. By default, the Snort with DAQ allocates 128MiB for packet memory,

which is significantly higher than PCAP default of 32KiB. In our tests, we set the

memory buffer to 2GiB in order to compare the results with libpcap. The buffer size can

be modified as follows.

Snort command line arguments:
--daq afpacket --daq-var buffer_size_mb=2048

Suricata configuration file:
af-packet:

 - interface: eth1

 buffer-size: 2147483647

Furthermore, recent versions of Suricata include a ring buffer feature for AF_PACKET

capture. This is a memory mapped buffer similar to PF_RING that will be discussed in

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
d

ro
p

p
e

d
 p

ac
ke

ts

Maximum transmission speed (Mbit/s)

Dropped packets using libpcap 2GiB buffer

Snort Suricata

47

the next chapter. Additionally, a mode named Zero Copy is also provided with this

buffer. This means that the memory allocated for the buffer is shared with the capture

process, so instead of kernel sending packets to the capture process, the process can just

read the packets from their original memory address. This method saves time and is less

consuming in terms of CPU resources. These features are only supported on kernel

versions above 3.1, but unfortunately we are using kernel version 2.6.32. [30]

Bro did not yet seem to support the AF_PACKET capturing mode. However, we were

still able to use the AF_PACKET for Snort and Suricata and see how it compared to the

previous methods. See Table 5 and Figure 13 for the test results.

Table 5: Percentage of dropped packets using previous optimizations and a 2GiB AF_PACKET buffer size

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M

Snort 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.50% 12.84% 16.97% 26.59% 36.46% (41.00%)

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.44%)

Figure 13: Percentage of dropped packets using previous optimizations and a 2GiB AF_PACKET buffer size

Snort improved the results compared to libpcap capture socket. With AF_PACKET it

was now dropping about 10% less packets overall. Suricata did not manage to achieve a

perfect result using AF_PACKET. It was again dropping around 110,000 packets (about

0,4%) at the fastest transmission speed. This is probably due to our older kernel version

and Suricata not being able to make use of newer advanced features. Similarly to

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0 100 200 300 400 500 600 700 800 900 1000%
 o

f
d

ro
p

p
e

d
 p

ac
ke

ts

Maximum transmission speed (Mbit/s)

Dropped packets using AF_PACKET with
2GiB buffer

Snort Suricata

48

libpcap, once the 2GiB buffer filled up AF_PACKET produced quite unstable results

and tests had to be performed many times in order to get a decent average.

CPU usage remained the similar to what it was after optimizations. Thus, there is no

need to repeat the results here.

4.3.3 Use PF_RING Network Socket

Final solution that we considered in this thesis was using the PF_RING network socket.

PF_RING is a new type of socket from a research company called ―ntop‖. One of its

main traits is that it should significantly improve packet capture speed. [31]

PF_RING is a complex software, therefore we will only be able to cover some of the

main aspects. As already mentioned in the previous chapter, it features a circular (ring)

buffer and the applications read packets from this buffer. Purpose of this is that

PF_RING can distribute packets to multiple application processes simultaneously. More

detailed explanations can be found from source [31], the PF_RING project homepage.

PF_RING package includes source code for many PF_RING-aware NIC drivers,

modified versions of some necessary software modules (e.g. libpcap, tcpdump, pfring-

daq-module) and even tools for testing and debugging.

Operating modes

There are three different operating modes for PF_RING, which can be chosen when

loading the PF_RING kernel module with insmod pf_ring.ko command. These

modes are as follows. [32]

 transparent_mode=0 – Default mode, which means that packets are sent to

PF_RING via the standard kernel mechanisms. Packet capture is not accelerated,

but PF_RING features can be used. All NIC drivers support this mode.

 transparent_mode=1 – In this mode NIC driver sends packets directly to

PF_RING, however packets are still propagated to other kernel components.

Packet capture is accelerated because packets are copied by the NIC driver itself

without passing through the usual kernel path. In order to use this mode, a

PF_RING-aware NIC driver has to be used.

 transparent_mode=2 - Packets are sent directly by the NIC driver to

PF_RING and are not propagated to other kernel components. This mode is the

49

fastest, because packets are copied only to PF_RING and discarded after

processing. Again, the NIC driver has to support PF_RING to enable this mode.

Installation

Getting PF_RING to function properly proved to be a quite complicated procedure.

There are some incomplete and outdated guides available on the Internet, which can

cause problems. To assist in this matter, we will point out some important steps. We

followed the guide on the official ntop site [33], however this does not explain how to

do any of the configuration on the IDS solution.

After compiling and installing all necessary packages, PF_RING module should be

loaded to the kernel. There are some important arguments that could be passed to the

module. The transparent mode has to be selected. To cope with peaks in the network

traffic, a buffer size can be specified for PF_RING as well.

Load PF_RING kernel module:
insmod /lib/modules/2.6.32-

279.11.1.el6.x86_64/kernel/net/pf_ring/pf_ring.ko

transparent_mode=2 min_num_slots=16384

Note that, this guide instructs the user to unload the old network driver. Bear in mind

that after issuing the command the host will lose network connectivity. This might be

avoided when the newly compiled driver is ready to be loaded. To avoid the risk of

being cut off from the server, access to the host console should be available before

attempting this.

Unload the old driver and load the newly compiled driver with a single invocation:
rmmod bnx2; insmod /lib/modules/2.6.32-

279.11.1.el6.x86_64/updates/bnx2.ko

IDS configuration

Suricata and Bro were both able to make use of the improved performance.

Unfortunately, we were not able to get PF_RING working with DAQ for Snort. For

some reason DAQ would not load the PF_RING capture library.

For Suricata no extra configuration was necessary and PF_RING run-mode could be

selected from the command line.

50

Suricata command line arguments:
--pf-ring=eth1

Bro required some extra configuration. Bro had to be run in Cluster mode, in order to

enable PF_RING. There is already an example configuration in place which can be

modified. The last two rows indicate a load balancing method and the number of Bro

worker processes to create for load balancing.

Bro node.cfg configuration:
[manager]

type=manager

host=172.16.16.1

[proxy-0]

type=proxy

host=172.16.16.1

[worker-0]

type=worker

host=172.16.16.1

interface=eth1

lb_method=pf_ring

lb_procs=8

Results using PF_RING

Using PF_RING resulted in excellent performance from both Suricata and Bro. Neither

dropped any packets, but at the fastest transmission speed around 15,000 packets were

dropped on the kernel level. This is quite much considering the overall good

performance. Table 6 shows the exact numbers, although with such good results there is

not much to look at.

Table 6: Percentage of dropped packets using previous optimizations and PF_RING

 50M 100M 150M 200M 300M 400M 500M 600M 700M 800M 900M 1000M

Suricata 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.06%)

Bro 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% (0.05%)

51

Figure 14: Percentage of CPU utilized by Suricata and Bro using PF_RING

Figure 14 shows that Bro and its eight worker processes are now using a lot more

resources. Linearity of the CPU usage graph hints that 1,000Mbit/s is probably the limit

that Bro can handle with this configuration on this hardware. Note that Bro was always

using about 30% of CPU resources, even when no packets were being processed. This is

said to be due to communication overhead between the multiple processes.

When it comes to Suricata, we were using the same optimized configuration from

experiment 2, so there was not much change in the results.

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 u

sa
ge

 %

Maximum transmission speed (Mbit/s)

CPU utilization with PF_RING

Suricata Bro

52

5 Discussion of Results

This chapter will summarize and interpret the results gathered during all experiments.

5.1 Dropped Packets

In terms of dropped packets, Suricata and Bro achieved the desired result – no dropped

packets at the fastest transmission speed on a 1,000Mbit/s network. The actual average

speed was rated at 895Mbit/s. This should be more than adequate to perform intrusion

detection on a mid-sized company network link.

Unfortunately, we were unable to test PF_RING with Snort (DAQ) due to unknown

errors. DAQ would not load the PF_RING capture module. We believe that when using

PF_RING, Snort would have also achieved the result of no dropped packets.

Next we will compare the results of the highest transmission speed for each IDS and

name the experiment where each IDS achieved its best results. This could be considered

as a top result for each IDS.

 Snort – Experiment 3 – AF_PACKET with 2GiB buffer – 41% dropped packets;

 Suricata:

o Experiment 3 – libpcap with 2GiB buffer – 0% dropped packets;

o Experiment 3 – PF_RING – 0% dropped packets.

 Bro – Experiment 3 – PF_RING – 0% dropped packets.

5.2 CPU Usage

When it comes to CPU usage, lower results are better. Of course, this is only true as

long as no packets are dropped. It seems that multi-threaded Suricata was able to

achieve the best results in terms of dropped packets while using the least amount of

CPU resources.

53

Snort and Bro are single-threaded applications, so by default, they were utilizing only

one of eight logical processors (i.e. around 12.5%). When using PF_RING socket, we

were able to create multiple worker processes for Bro. This allowed Bro to use all

available CPU resources. We tried the same approach for Snort, but were unsuccessful.

Therefore, we cannot be definitive about the results.

5.3 Memory Usage

While Suricata seemed to be using the least amount of CPU resources, it was just the

opposite in terms of memory usage. Figure 15 depicts the average memory consumption

of IDS process(es) after each experiment. Note that different transmission speeds did

not have any significant effect on memory consumption.

Figure 15: IDS process memory usage in experiments

Higher memory consumption is not necessarily a negative aspect as long as there is

memory to spare. Memory can be used to enable more efficient detection algorithms,

increase buffers and improve caching.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

M
e

m
o

ry
 u

sa
ge

 (
M

iB
)

Memory usage in experiments

54

6 Future Research

This chapter offers some ideas on future research topics that were not covered in this

thesis.

6.1 Snort (DAQ) with PF_RING

In this thesis we were unable to get PF_RING network socket to function with DAQ.

The PF_RING modules compiled and installed successfully, however DAQ would not

load the PF_RING module.

It would be interesting to see, whether or not Snort can achieve the same result as

Suricata and Bro – no dropped packets at the highest transmission speed on a

1,000Mbit/s network. The same or similar hardware would have to be used for the

results to be comparable.

6.2 Use Suricata with Kernel Versions Above 3.1

Suricata had many features that were only functional on kernel versions above 3.1. We

were not able to test them in this thesis. Enabling those newer features would probably

increase performance even more.

6.3 Experiment with Speeds Up To 10Gbit/s

Nowadays many network backbones already operate at 10Gbit/s bandwidth. It would be

interesting to experiment with the same IDS engines on a 10Gbit/s network. The testing

environment would require to be replaced with more powerful hardware and special

10Gbit/s network adapters.

55

6.4 GPU Processing

It is known that Graphics Processing Units (GPUs) are often used in computational

tasks that can be parallelized (parallel computing). In situations like these GPUs are

usually many times faster than CPUs. However, using GPU instead of CPU complicates

the configuration and can be difficult to manage.

Suricata already has support for NVIDIA CUDA (Compute Unified Device

Architecture) parallel computing platform. Other intrusion detection systems have

experimental releases that are not yet stable. Experiments in this field could help

contribute to this research. One would require testing hardware with a compatible

graphics card.

6.5 Compare Different Rule Sets

In this thesis we did not concentrate on the accuracy of the rules. This would have

widened the scope and increased the risk of losing focus.

There are a few major contributors to rules for Snort and Suricata. Comparing systems

with similar and/or different rule sets could reveal which engines and rule sets are more

effective in detecting intrusions.

Testing could be performed with software called Pytbull, which is a python based

flexible IDS/IPS testing framework. It comes packaged with more than 300 tests.

Additional tests can be added if necessary. [34]

56

7 Conclusion

As a result of this thesis, an overview of three popular open-source intrusion detection

systems (IDS) was provided along with their comparative performance benchmarks.

The thesis addressed a problem that there practically were no recent and unbiased

comparisons available for intrusion detection systems.

On the one hand, the problem arises from a fact that most articles and comparisons are

often written by people involved with some IDS community. On the other hand,

intrusion detection is difficult to accomplish perfectly and that makes the IDS testing

procedure an interesting research topic now and again.

The thesis was set to achieve the following objectives:

 Present an overview of popular open-source IDS solutions;

 Carry out their comparative evaluation that satisfies the following conditions:

o Reliability – Reliable test results;

o Repeatability – Tests can be run again when needed;

o Reproducibility – Provide configuration instructions.

The aim of the thesis was not to determine the best open-source IDS, but rather bring

out the advantages and disadvantages of each system.

We analyzed three network-based intrusion detection systems and gave a brief

description of each system. Snort is probably the most widely deployed IDS worldwide.

Suricata is a younger competitor of Snort that offers many improvements. Bro is an

alternative to Snort and Suricata that also provides a comprehensive platform for more

general network traffic analysis.

We performed the comparative evaluation on a 1Gbit/s network with a number of

experiments. Note that testing the accuracy of the detection rules was not included in

the scope of this thesis. We used the percentage of dropped packets as the primary

metric for measuring the IDS performance.

57

With the first experiment, a performance baseline was established for all three systems

in their default configuration. As the second experiment, optimizations were applied to

the configuration. Finally, three different network packet capture modules (PCAP,

AF_PACKET, PF_RING) were tested as the third experiment.

Experiments demonstrated that systems in their default configuration were only able to

handle about 100Mbit/s network traffic. Number of dropped packets increased

significantly beyond this limit. At this point we began applying the optimizations and

testing different network sockets. All modifications were documented in the thesis.

As a result, Snort paired with AF_PACKET network socket was able to handle about

450Mbit/s of traffic. Unfortunately, we were unsuccessful in running Snort with

PF_RING socket due to unresolved errors. We are planning to solve this problem as

part of our future research.

Suricata with its multi-threaded architecture achieved good results in all experiments.

Only exception being that it was consuming nearly double the amount of memory

compared to Snort or Bro. Suricata did not drop any packets at 1,000Mbit/s when using

the improved libpcap module or the PF_RING network socket.

Bro was not able to take part in many of the experiments due to compatibility issues.

However, similarly to Suricata, it was able to achieve the perfect result of no dropped

packets at 1,000Mbit/s using PF_RING socket.

In short, we saw a four- to ten-fold increase in performance. Transmission speeds up to

1,000Mbit/s were handled without any dropped packets.

It can be concluded that all the objectives of the thesis were achieved as described.

58

Võrdlusanalüüs vabatarkvaralistest ründetuvastus-

süsteemidest

Magistritöö (30 EAP)

Mauno Pihelgas

Kokkuvõte

Käesoleva magistritöö tulemusena anti ülevaade kolmest populaarsest

vabatarkvaralisest ründetuvastussüsteemist ning teostati nende jõudlusmõõtmised.

Lõputöö lahendas probleemi, et erinevatest ründetuvastussüsteemidest ei leidunud

erapooletuid ja ajakohaseid võrdlusi.

Ühest küljest tuleneb probleem sellest, et enamik artiklite ja võrdluste autorid on ise

seotud mõne ründetuvastussüsteemi kogukonnaga ning nende arvamus ei pruugi alati

olla objektiivne. Teisalt tuleneb probleem asjaolust, et ründetuvastust on tänases kiiresti

muutuvas keskkonnas keerukas teostada. Just seetõttu on teema üha uuesti aktuaalne.

Lõputöö ülesande püstitusel määratleti kaks põhieesmärki:

 Anda ülevaade populaarsetest vabatarkvaralistest ründetuvastussüsteemidest;

 Testida ning võrrelda nende ründetuvastussüsteemide jõudlusomadusi, mis

rahuldaksid järgnevaid alamtingimusi:

o Usaldusväärsus – Usaldusväärsed testi tulemused;

o Korratavus – Samu teste saab vajadusel korduvalt käivitada;

o Taastoodetavus – Paigaldusjuhiste olemasolu.

Magistritöö eesmärk ei olnud parima ründetuvastussüsteemi leidmine, vaid pigem iga

süsteemi tugevamate ja nõrgemate omaduste väljaselgitamine.

Töö käigus analüüsiti ning kirjeldati kolme võrgupõhist ründetuvastussüsteemi. Snort

on üks suurima kasutajaskonnaga ründetuvastussüsteem kogu maailmas. Suricata on

59

Snort-i suurim konkurent, omades mõningaid eeliseid Snort-i ees. Bro on alternatiivne

lahendus Snort-i ja Suricata asemel, pakkudes ühtlasi laialdasema kasutusalaga

võrguanalüüsi platvormi.

Töö praktilises osas teostati 1Gbit/s ribalaiusega võrguühendusel süsteemide

jõudlusmõõtmisi. Eksperimentide käigus ei mõõdetud mitte tuvastusreeglite täpsust,

vaid hoopis analüüsimata jäänud võrgupakettide hulka.

Esimeses eksperimendis, tuvastati kõigi kolme süsteemi võimekus nende

vaikeseadistuses. Teine eksperiment sisaldas endas süsteemide seadistuse

optimeerimist. Viimaks testiti ründetuvastussüsteeme koostöös erinevate võrgusoklite

(ingl. k. network socket) lahendustega (PCAP, AF_PACKET, PF_RING).

Tulemused näitasid, et vaikeseadistuses suudavad süsteemid edukalt töödelda vaid

võrguliiklust kuni 100Mbit/s. Suurematel kiirustel kasvas analüüsimata jäänud

võrgupakettide hulk märgatavalt. Tulemuste parandamiseks optimeeriti seadistust ning

katsetati erinevaid võrgusoklite lahendusi. Kõik muudatused kirjeldati käesolevas töös.

Kasutades AF_PACKET soklit, suutis Snort analüüsida kuni 450Mbit/s võrguliiklust.

Kahjuks ei õnnestunud tehniliste probleemide tõttu kasutada Snort-i koos PF_RING

sokliga, mis tõenäoliselt oleks parandanud tulemust veelgi. See probleem on plaanis

edasise uurimustöö käigus kõrvaldada.

Mitmelõimelise arhitektuuriga Suricata saavutas igas testis head tulemused. Erandiks oli

vaid enam kui kahekordne mälukasutus võrreldes kahe teise süsteemiga. Kasutades

täiustatud libpcap või PF_RING võrgusoklit, suutis Suricata analüüsida kiirusel

1000Mbit/s kõik talle saadetud võrgupaketid.

Ühilduvusprobleemide tõttu ei õnnestunud Bro testimine mõnes eksperimendis. Aga

kasutades PF_RING võrgusoklit, suutis ka Bro kiirusel 1000Mbit/s analüüsida kõik

võrgupaketid.

Lühidalt öeldes, töö käigus saavutati 4-10kordne kasv kõikide ründetuvastussüsteemide

jõudluses. Eelnevast lähtudes võib väita, et kõik töös püstitatud eesmärgid on

nõuetekohaselt täidetud.

60

List of References

1. The Linux Information Project. BSD License Definition. [Online] [Cited:

November 29, 2012.] http://www.linfo.org/bsdlicense.html.

2. Free Software Foundation, Inc. The GNU Operating System. [Online] [Cited:

November 29, 2012.] http://www.gnu.org/.

3. Lyon, Gordon. Nmap - Free Security Scanner For Network Exploration & Security

Audits. [Online] [Cited: December 1, 2012.] http://nmap.org/.

4. Wireshark Wiki. Libpcap File Format. Wireshark Wiki. [Online] [Cited: December

1, 2012.] http://wiki.wireshark.org/Development/LibpcapFileFormat.

5. Sophos. Security Threat Report 2012. [Online] 2012. [Cited: August 27, 2012.]

http://www.sophos.com/medialibrary/PDFs/other/SophosSecurityThreatReport2012.pdf

.

6. Kvell, Alar. A high-performance network intrusion detection solution for S4A

software. Tartu : Tartu Ülikool, 2012.

7. Albin, Eugene A. A Comparative Analysis of the Snort and Suricata Intrusion-

Detection Systems. [Online] September 2011. [Cited: August 27, 2012.]

http://faculty.nps.edu/ncrowe/oldstudents/ealbin_thesis_final.htm.

8. Sourcefire. Using Perfmon and Performance Profiling to Tune Snort Preprocessors

and Rules. [Online] November 6, 2009. [Cited: November 19, 2012.]

http://www.snort.org/assets/163/WhitePaper_Snort_PerformanceTuning_2009.pdf.

9. Leblond, Éric. Suricata, to 10Gbps and beyond. To Linux and beyond! [Online] July

30, 2012. [Cited: November 15, 2012.] https://home.regit.org/2012/07/suricata-to-

10gbps-and-beyond/.

10. —. Optimizing Suricata on multicore CPUs. To Linux and beyond! [Online] January

26, 2011. [Cited: November 16, 2012.] http://home.regit.org/?p=438.

11. Holste, Martin. Bro Quickstart: Cluster Edition. Open-Source Security Tools.

[Online] September 26, 2011. [Cited: November 16, 2012.]

http://ossectools.blogspot.com/2011/09/bro-quickstart-cluster-edition.html.

12. Burks, Doug. Security Onion Homepage. [Online] [Cited: November 29, 2012.]

http://securityonion.blogspot.com/.

61

13. Καρσπιδης, Χαραλαμπος. Snort, IDS, IPS, NSM, hacking and...beyond.

Harrykar's Techies Blog. [Online] [Cited: October 2012, 25.]

http://harrykar.blogspot.com/2009/05/snort-ids-ips-nsm-andbeyond.html.

14. Sourcefire. Snort :: Home Page. [Online] [Cited: September 17, 2012.]

http://www.snort.org/.

15. The Open Information Security Foundation. Suricata Homepage. [Online]

[Cited: September 18, 2012.] http://www.openinfosecfoundation.org/.

16. Bro. The Bro Network Security Monitor. [Online] [Cited: October 18, 2012.]

http://bro-ids.org/.

17. Sourcefire. Snort :: License. [Online] [Cited: October 2012, 16.]

http://www.snort.org/snort/license.

18. Roesch, Martin. Snort 3.0 Beta 3 Released. Security Sauce. [Online] April 2, 2009.

[Cited: November 18, 2012.] http://securitysauce.blogspot.com/2009/04/snort-30-beta-

3-released.html.

19. The Open Information Security Foundation. What is Suricata. Suricata. [Online]

[Cited: October 2012, 22.]

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/What_is_Suricata.

20. Paxson, Vern. Bro: A System for Detecting Network Intruders in Real-Time.

[Online] January 26, 1998. [Cited: November 1, 2012.]

http://static.usenix.org/publications/library/proceedings/sec98/full_papers/paxson/paxso

n.pdf.

21. Gerber, John. Three Open Source IDS/IPS Engines: The Setup. Security

Advancements at the Monastery. [Online] August 26, 2010. [Cited: September 15,

2012.]

http://web.archive.org/web/20100831151023/http://blog.securitymonks.com/2010/08/26

/three-little-idsips-engines-build-their-open-source-solutions/.

22. Bro. Bro Cluster. Bro 2.1 documentation. [Online] [Cited: November 2012, 18.]

http://www.bro-ids.org/documentation/cluster.html.

23. The UCSB International Capture The Flag. The 2010 iCTF Data. The UCSB

iCTF. [Online] [Cited: September 20, 2012.] http://ictf.cs.ucsb.edu/data/ictf2010/.

24. Bro. Quick Start Guide. Bro 2.1 documentation. [Online] [Cited: October 6, 2012.]

http://www.bro-ids.org/documentation/quickstart.html.

25. Parker, William. Snort 2.9.3.1 on CentOS 6.3. [Online] [Cited: October 3, 2012.]

http://www.snort.org/assets/202/snort2931_CentOS63.pdf.

62

26. The Open Information Security Foundation. Suricata - CentOS 5.6 Installation.

[Online] [Cited: October 4, 2012.]

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/CentOS_56_Installatio

n.

27. Kemp, Juliet. Use Profiling to Improve Snort Performance. OpenLogic. [Online]

[Cited: November 20, 2012.] http://www.openlogic.com/wazi/bid/188092/Use-

Profiling-to-Improve-Snort-Performance.

28. Sourcefire. SNORT Users Manual 2.9.3. The Snort Project. [Online] [Cited:

November 20, 2012.] http://manual.snort.org/node16.html.

29. Bro. Script variable to set pcap's buffer size. Trac Trickets. [Online] [Cited:

December 03, 2012.] http://tracker.bro-ids.org/bro/ticket/553.

30. Leblond, Éric. Using AF_PACKET zero copy mode in Suricata. To Linux and

beyond! [Online] [Cited: December 3, 2012.] https://home.regit.org/2012/02/using-

af_packet-zero-copy-mode-in-suricata/.

31. ntop. PF_RING Homepage. [Online] ntop. [Cited: December 3, 2012.]

http://www.ntop.org/products/pf_ring/.

32. —. PF_RING and Transparent Mode. [Online] [Cited: December 3, 2012.]

http://www.ntop.org/pf_ring/pf_ring-and-transparent-mode/.

33. —. Installation Guide For PF_RING. [Online] [Cited: December 3, 2012.]

http://www.ntop.org/pf_ring/installation-guide-for-pf_ring/.

34. Damaye, Sébastien. Pytbull Homepage. [Online] [Cited: December 4, 2012.]

http://pytbull.sourceforge.net/.

35. Hewlett-Packard Development Company, L.P. HP ProLiant DL320 Generation 6

(G6). [Online] [Cited: October 4, 2012.]

http://h18004.www1.hp.com/products/quickspecs/13344_na/13344_na.html.

36. —. HP ProLiant DL360 Generation 5 (G5). [Online] [Cited: October 4, 2012.]

http://h18004.www1.hp.com/products/quickspecs/12476_div/12476_div.HTML.

37. Linksys. Product Data. [Online] [Cited: October 4, 2012.]

http://www.andovercg.com/datasheets/linksys-srw2016-switch.pdf.

63

Appendices

Annex 1 – Hardware Specification

Role: IDS

Hewlett-Packard (HP) ProLiant DL320 Generation6 server [35]

 CPU: Intel® Xeon® Processor E5630 (12M Cache, 2.53 GHz);

o 1 Physical CPU;

o 4 cores;

o 8 threads (Hyper-Threading enabled).

 RAM: 72GB PC3-10600 (DDR3-1333) Registered CAS-9 Memory;

 NIC: Embedded NC326i Dual Port Gigabit Server Adapter;

 HDD Controller: HP Smart Array P410/512 BBWC Controller;

 HDD: RAID1 – 2x Seagate Barracuda 750GB, 3,5‖ LFF, 7200RPM, 16MB

cache, SATA 3.0Gb/s;

 GPU: Integrated ATI ES1000, 64 MB;

 Management: HP Integrated Lights Out 2 (iLO2).

Role: Supporting Host1 & Supporting Host2

HP ProLiant DL360 Generation5 server [36]

 CPU: Intel® Xeon® Processor E5450 (12M Cache, 3.00 GHz);

o 2 Physical CPUs;

o 4 cores per CPU;

o 8 threads.

 RAM: 32GB PC2-5300 (DDR2-667) Fully Buffered Memory;

 NIC: Two embedded NC373i Multifunction Gigabit Network Adapters;

 HDD Controller: HP Smart Array P400i/256MB BBWC Controller;

 HDD:

o RAID1 – 2x HP 72GB, 2,5‖ SFF, 15K RPM, SAS;

o RAID5 – 3x HP 146GB, 2,5‖ SFF, 15K RPM, SAS;

64

 GPU: Integrated ATI ES1000, 32MB;

 Management: HP Integrated Lights Out 2 (iLO2).

Looking at the CPU specifications of the servers, it might seem that two physical E5450

CPUs could perform better than one E5630. Some tests were run to figure out, which

machine performs faster.

In synthetic single-threaded benchmarks the 3GHz E5450 processors performed better

than the 2,53GHz E5630, however when running any of the intrusion detection systems,

the newer E5630 had better results (dropping less packets).

This is probably because E5450 is about three years older than E5630. Moreover, the

DL320 G6 server has newer HDD controller and DDR3 memory instead of DDR2. The

difference in amount of memory did not have much effect, because most of it was not

utilized.

Network switch

Linksys 16-Port 10/100/1000 + 2-Port MiniGBIC Gigabit Switch with WebView [37]

 Ports:

o 16x 10/100/1000 RJ-45 ethernet ports;

o 2 shared MiniGBIC slots for optical interfaces;

 Switching Capacity: 32 Gbps, non-blocking

 MAC table size: 8KiB

Network cable type used in the testing environment was straight-through CAT5E

Ethernet cable.

65

Annex 2 – Software Versions

This chapter lists the software names and versions used during the testing phase of this

thesis.

Operating System

 CentOS 6.3 64-bit

o Basic server installation

 Linux version 2.6.32-279.11.1.el6.x86_64

(mockbuild@c6b9.bsys.dev.centos.org) (gcc version 4.4.6 20120305 (Red Hat

4.4.6-4) (GCC)) #1 SMP Tue Oct 16 15:57:10 UTC 2012

To install prerequisite packages required by the IDS solutions, Extra Packages for

Enterprise Linux (EPEL) repository was added to the yum package manager

configuration.

http://mirror.switch.ch/ftp/mirror/epel/6/x86_64/epel-release-6-7.noarch.rpm

Measurement utilities
dstat-0.7.0-1

htop-1.0.1-2

Snort

snort-2.9.3.1-1 (released August 6, 2012)

daq-1.1.1-1

Prerequisites
flex-2.5.35-8.el6.x86_64

bison-2.4.1-5.el6.x86_64

zlib-1.2.3-27.el6.x86_64

zlib-devel-1.2.3-27.el6.x86_64

libpcap-1.0.0-6.20091201git117cb5.el6.x86_64

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64

tcpdump-4.0.0-3.20090921gitdf3cb4.2.el6.x86_64

pcre-7.8-4.el6.x86_64

pcre-devel-7.8-4.el6.x86_64

Suricata

suricata-1.3.2 (released October 03, 2012)

66

Prerequisites
libpcap-1.0.0-6.20091201git117cb5.el6.x86_64

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64

libnet-1.1.5-1.el6.x86_64

libnet-devel-1.1.5-1.el6.x86_64

pcre-7.8-4.el6.x86_64

pcre-devel-7.8-4.el6.x86_64

gcc-4.4.6-4.el6.x86_64

gcc-c++-4.4.6-4.el6.x86_64

automake-1.11.1-1.2.el6.noarch

autoconf-2.63-5.1.el6.noarch

libtool-2.2.6-15.5.el6.x86_64

make-3.81-20.el6.x86_64

libyaml-0.1.3-1.el6.x86_64

libyaml-devel-0.1.3-1.el6.x86_64

zlib-1.2.3-27.el6.x86_64

zlib-devel-1.2.3-27.el6.x86_64

libcap-ng-0.6.4

Bro

bro-2.1 (released August 29, 2012)

Prerequisites
cmake-2.6.4-5.el6.x86_64

make-3.81-20.el6.x86_64

gcc-4.4.6-4.el6.x86_64

gcc-c++-4.4.6-4.el6.x86_64

flex-2.5.35-8.el6.x86_64

bison-2.4.1-5.el6.x86_64

libpcap-devel-1.0.0-6.20091201git117cb5.el6.x86_64

openssl-devel.x86_64 0:1.0.0-25.el6_3.1

python-devel.x86_64 0:2.6.6-29.el6_3.3

swig.x86_64 0:1.3.40-6.el6

zlib-devel-1.2.3-27.el6.x86_64

file-devel-5.04-13.el6.x86_64

gperftools-libs-2.0-3.el6.2.x86_64

gperftools-devel-2.0-3.el6.2.x86_64

ipsumdump-1.82

PF_RING
PF_RING 5.5.1 (released November 24, 2012)

libpcap-1.1.1-ring

tcpdump.4.1.1

67

Annex 3 – Suricata CPU Affinity Configuration

Here are listed our modified CPU affinity settings from the suricata.yaml file.

 set-cpu-affinity: yes

 cpu-affinity:

 - management-cpu-set:

 cpu: [0] # include only these cpus in affinity

settings

 - receive-cpu-set:

 cpu: [0] # include only these cpus in affinity

settings

 - decode-cpu-set:

 cpu: [0]

 mode: "balanced"

 - stream-cpu-set:

 cpu: [0]

 - detect-cpu-set:

 cpu: [1, 2, 3]

 mode: "exclusive" #run detect threads in these cpus

 #Use explicitely 3 threads and don't compute number

by using detect-thread-ratio variable

 threads: 3

 prio:

 #low: [0]

 medium: ["1-2"]

 high: [3]

 default: "medium"

 - verdict-cpu-set:

 cpu: [3]

 prio:

 default: "high"

 - reject-cpu-set:

 cpu: [3]

 prio:

 default: "low"

 - output-cpu-set:

 cpu: [3]

 prio:

 default: "medium"

	Declaration
	List of Acronyms and Abbreviations
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Objective of the Thesis
	1.3 Related Work
	1.4 Outline of the Thesis
	1.5 Acknowledgements

	2 Introduction to Intrusion Detection Systems
	2.1 Choosing Between an IDS or IPS Solution
	2.2 Selection of IDS Sensors for Testing
	2.2.1 Snort
	2.2.2 Suricata
	2.2.3 Bro

	2.3 Comparison of Features Side-by-side

	3 Testing Implementation
	3.1 Environment
	3.2 Factors Affecting IDS Performance
	3.3 Input Data
	3.4 Rule Set
	3.5 Experiment Setup

	4 Results
	4.1 Experiment 1 - Default OS & IDS Configuration
	4.2 Experiment 2 - Optimize IDS Configuration
	4.2.1 Snort
	4.2.2 Suricata
	4.2.3 Bro
	4.2.4 Optimization Results

	4.3 Experiment 3 – Modify or Replace Network Packet Capture Module
	4.3.1 Increase libpcap Buffer Size
	4.3.2 Use AF_PACKET Network Socket
	4.3.3 Use PF_RING Network Socket

	5 Discussion of Results
	5.1 Dropped Packets
	5.2 CPU Usage
	5.3 Memory Usage

	6 Future Research
	6.1 Snort (DAQ) with PF_RING
	6.2 Use Suricata with Kernel Versions Above 3.1
	6.3 Experiment with Speeds Up To 10Gbit/s
	6.4 GPU Processing
	6.5 Compare Different Rule Sets

	7 Conclusion
	Võrdlusanalüüs vabatarkvaralistest ründetuvastus-süsteemidest
	List of References
	Appendices
	Annex 1 – Hardware Specification
	Annex 2 – Software Versions
	Annex 3 – Suricata CPU Affinity Configuration

